lecture 8
play

Lecture 8 ARMA Models Colin Rundel 02/13/2017 1 AR(p) 2 AR(p) - PowerPoint PPT Presentation

Lecture 8 ARMA Models Colin Rundel 02/13/2017 1 AR(p) 2 AR(p) From last time, p 1. Expected value? 2. Covariance / correlation? 3. Stationarity? 3 AR ( p ) : y t = + 1 y t 1 + 2 y t 2 + + p y t p + w t


  1. Lecture 8 ARMA Models Colin Rundel 02/13/2017 1

  2. AR(p) 2

  3. AR(p) From last time, p 1. Expected value? 2. Covariance / correlation? 3. Stationarity? 3 AR ( p ) : y t = δ + ϕ 1 y t − 1 + ϕ 2 y t − 2 + · · · + ϕ p y t − p + w t ∑ = δ + w t + ϕ i y t − i i = 1 What are the properities of AR ( p ) ,

  4. L k y t Lag operator 1 k y t therefore, 2 y t L y t The lag operator is convenience notation for writing out AR (and other) time L L y t L 2 y t this can be generalized where, We define the lag operator L as follows, series models. 4 L y t = y t − 1

  5. Lag operator The lag operator is convenience notation for writing out AR (and other) time series models. We define the lag operator L as follows, this can be generalized where, therefore, 4 L y t = y t − 1 L 2 y t = L L y t = L y t − 1 = y t − 2 L k y t = y t − k

  6. p L 1 L 2 L 2 p L p This polynomial of the lags Lag polynomial 1 is called the lag or characteristic polynomial of the AR process. 5 An AR ( p ) model can be rewitten as y t = δ + ϕ 1 y t − 1 + ϕ 2 y t − 2 + · · · + ϕ p y t − p + w t y t = δ + ϕ 1 L y t + ϕ 2 L 2 y t + · · · + ϕ p L p y t + w t y t − ϕ 1 L y t − ϕ 2 L 2 y t − · · · − ϕ p L p y t = δ + w t ( 1 − ϕ 1 L − ϕ 2 L 2 − · · · − ϕ p L p ) y t = δ + w t

  7. This polynomial of the lags Lag polynomial is called the lag or characteristic polynomial of the AR process. 5 An AR ( p ) model can be rewitten as y t = δ + ϕ 1 y t − 1 + ϕ 2 y t − 2 + · · · + ϕ p y t − p + w t y t = δ + ϕ 1 L y t + ϕ 2 L 2 y t + · · · + ϕ p L p y t + w t y t − ϕ 1 L y t − ϕ 2 L 2 y t − · · · − ϕ p L p y t = δ + w t ( 1 − ϕ 1 L − ϕ 2 L 2 − · · · − ϕ p L p ) y t = δ + w t ϕ p ( L ) = ( 1 − ϕ 1 L − ϕ 2 L 2 − · · · − ϕ p L p )

  8. lay outside the complex unit circle Example AR(1): 6 Stationarity of AR ( p ) processes An AR ( p ) process is stationary if the roots of the characteristic polynomial

  9. lay outside the complex unit circle Example AR(1): 6 Stationarity of AR ( p ) processes An AR ( p ) process is stationary if the roots of the characteristic polynomial

  10. Example AR(2) 7

  11. AR(2) Stationarity Conditions From http://www.sfu.ca/~baa7/Teaching/econ818/StationarityAR2.pdf 8

  12. Proof . . . . . . . . . . . 0 0 0 1 0 0 0 0 . . 1 0 . . . 0 . . . 0 w t . . . . 0 1 0 0 1 0 . 9 . . . 0 0 0 . . y t where . We can rewrite the AR ( p ) model into an AR ( 1 ) form using matrix notation y t = δ + ϕ 1 y t − 1 + ϕ 2 y t − 2 + · · · + ϕ p y t − p + w t ξ t = δ + F ξ t − 1 + w t           δ ϕ 1 ϕ 2 ϕ 3 · · · ϕ p − 1 ϕ p y t − 1 · · ·           y t − 1 y t − 2           · · ·           = + + y t − 2 y t − 3                     · · ·                     · · · y t − p + 1 y t − p   δ + w t + ∑ p i = 1 ϕ i y t − i   y t − 1     = y t − 2         y t − p + 1

  13. Proof sketch (cont.) t and therefore we need lim t 10 equation So just like the original AR ( 1 ) we can expand out the autoregressive ξ t = δ + w t + F ξ t − 1 = δ + w t + F ( δ + w t − 1 ) + F 2 ( δ + w t − 2 ) + · · · + F t − 1 ( δ + w 1 ) + F t ( δ + w 0 ) F i + ∑ ∑ = δ F i w t − i i = 0 i = 0 t →∞ F t → 0.

  14. F i w t 1 w t i i i Q Q 0 i t 1 i Q Q 0 i t Proof sketch (cont.) 0 i t F i 0 i t t Using this property we can rewrite our equation from the previous slide as A useful property of the eigen decomposition is that corresponding eigenvalues. 11 We can find the eigen decomposition such that F = Q Λ Q − 1 where the columns of Q are the eigenvectors of F and Λ is a diagonal matrix of the F i = Q Λ i Q − 1

  15. Proof sketch (cont.) t t t t 11 Using this property we can rewrite our equation from the previous slide as corresponding eigenvalues. A useful property of the eigen decomposition is that We can find the eigen decomposition such that F = Q Λ Q − 1 where the columns of Q are the eigenvectors of F and Λ is a diagonal matrix of the F i = Q Λ i Q − 1 F i + ∑ ∑ ξ t = δ F i w t − i i = 0 i = 0 Q Λ i Q − 1 + ∑ ∑ Q Λ i Q − 1 w t − i = δ i = 0 i = 0

  16. Proof sketch (cont.) 0 . . . . . . 0 . p Therefore, lim when lim which requires that for all i . ... . 0 0 1 0 12 0 2   λ i · · · λ i · · ·   Λ i =         · · · λ i t →∞ F t → 0 t →∞ Λ t → 0 | λ i | < 1

  17. p where L 1 L 2 L 2 p 1 L p p L p Proof sketch (cont.) 0 1 gives 1 1 which if we multiply by 1 based on our definition of F our eigenvalues will therefore be the roots of 13 Eigenvalues are defined such that for λ , det ( F − λ I ) = 0 λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − · · · − ϕ p 1 λ 1 − ϕ p = 0

  18. Proof sketch (cont.) based on our definition of F our eigenvalues will therefore be the roots of 13 Eigenvalues are defined such that for λ , det ( F − λ I ) = 0 λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − · · · − ϕ p 1 λ 1 − ϕ p = 0 which if we multiply by 1 /λ p where L = 1 /λ gives 1 − ϕ 1 L − ϕ 2 L 2 − · · · − ϕ p 1 L p − 1 − ϕ p L p = 0

  19. w w 14 Properties of AR ( p ) For a stationary AR ( p ) process where w t has E ( w t ) = 0 and Var ( w t ) = σ 2 δ E ( Y t ) = 1 − ϕ 1 − ϕ 2 − · · · − ϕ p Var ( Y t ) = γ 0 = ϕ 1 γ 1 + ϕ 2 γ 2 + · · · + ϕ p γ p + σ 2 Cov ( Y t , Y t − j ) = γ j = ϕ 1 γ j − 1 + ϕ 2 γ j − 2 + · · · + ϕ p γ j − p Corr ( Y t , Y t − j ) = ρ j = ϕ 1 ρ j − 1 + ϕ 2 ρ j − 2 + · · · + ϕ p ρ j − p

  20. Moving Average (MA) Processes 15

  21. MA(1) A moving average process is similar to an AR process, except that the autoregression is on the error term. Properties: 16 MA ( 1 ) : y t = δ + w t + θ w t − 1

  22. Time series 17

  23. ACF 18 ACF ACF 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 0 2 2 4 4 θ =−0.1 θ =0.1 Lag Lag 6 6 8 8 10 10 ACF ACF −0.2 0.2 0.4 0.6 0.8 1.0 −0.5 0.0 0.5 1.0 0 0 2 2 θ =−0.8 4 θ =0.8 4 Lag Lag 6 6 8 8 10 10 ACF ACF 0.0 0.2 0.4 0.6 0.8 1.0 −0.2 0.2 0.4 0.6 0.8 1.0 0 0 2 2 θ =−2.0 4 4 θ =2.0 Lag Lag 6 6 8 8 10 10

  24. MA(q) Properties: 19 MA ( q ) : y t = δ + w t + θ 1 w t − 1 + θ 2 w t − 2 + · · · + θ q w t − q

  25. Time series 20

  26. ACF 21 θ ={−1.5} θ ={−1.5, −1} 1.0 1.0 0.5 0.6 ACF ACF 0.0 0.2 −0.5 −0.2 0 2 4 6 8 10 0 2 4 6 8 10 Lag Lag θ ={−1.5, −1, 2} θ ={−1.5, −1, 2, 3} 1.0 1.0 0.5 0.5 ACF ACF 0.0 0.0 −0.5 −0.5 0 2 4 6 8 10 0 2 4 6 8 10 Lag Lag

  27. ARMA Model 22

  28. ARMA Model An ARMA model is a composite of AR and MA processes, Since all MA processes are stationary, we only need to examine the AR circle). 23 ARMA ( p , q ) : y t = δ + ϕ 1 y t − 1 + · · · ϕ p y t − p + w t + θ 1 w t − 1 + · · · + θ q w t q ϕ p ( L ) y t = δ + θ q ( L ) w t aspect to determine stationarity (roots of ϕ p ( L ) lie outside the complex unit

  29. Time series 24

  30. ACF 25 φ ={0.9}, θ ={−} φ ={−0.9}, θ ={−} φ ={−}, θ ={0.9} φ ={−}, θ ={−0.9} 1.0 1.0 1.0 1.0 0.5 0.6 0.6 0.5 ACF ACF ACF ACF 0.0 0.2 0.2 0.0 −0.5 −0.2 −0.2 −0.5 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 Lag Lag Lag Lag φ ={0.9}, θ ={0.9} φ ={−0.9}, θ ={0.9} φ ={0.9}, θ ={−0.9} φ ={−0.9}, θ ={−0.9} 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6 ACF ACF ACF ACF 0.2 0.2 0.2 0.2 −0.2 −0.2 −0.2 −0.2 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 Lag Lag Lag Lag

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend