lecture 23
play

Lecture 23 April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun - PowerPoint PPT Presentation

. . . . .. . . .. . . .. . . .. . . .. . . Lecture 23 April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang April 11th, 2013 Hyun Min Kang Interval Estimation Biostatistics 602 - Statistical Inference .. . . .


  1. . . .. . . .. . . .. . p-Values by conditioning on on sufficient statistic .. . . .. . . .. . (not necessarily including alternative hypothesis). .. If we consider only the conditional distribution, by Theorem 8.3.27, this is April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang s S Pr p X a valid p-value, meaning that S x If the null hypothesis is W x S Pr W X p x that H is true. Define Again, let W X denote a test statistic where large value give evidence . s does not depend on true, the conditional distribution of X given S . . .. . . . .. . . .. . .. . . . .. . . .. . . .. 5 / 1 . .. . .. . . .. . . . . . .. . . .. . . .. Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } .

  2. . .. .. . . .. . . . . . .. . . .. . . . .. .. If we consider only the conditional distribution, by Theorem 8.3.27, this is April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang s S Pr p X a valid p-value, meaning that S x . W x S Pr W X p x that H is true. Define Again, let W X denote a test statistic where large value give evidence (not necessarily including alternative hypothesis). If the null hypothesis is p-Values by conditioning on on sufficient statistic .. . . .. .. . . .. . . . .. . .. . . .. . . . . .. .. . . .. . . .. . . . . . .. . . .. . 5 / 1 Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ .

  3. . . . . .. . . .. . . .. . . .. .. . .. . . a valid p-value, meaning that April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang s S Pr p X If we consider only the conditional distribution, by Theorem 8.3.27, this is .. (not necessarily including alternative hypothesis). If the null hypothesis is p-Values by conditioning on on sufficient statistic . .. . . .. . . . . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 5 / 1 .. . . .. . . Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ . Again, let W ( X ) denote a test statistic where large value give evidence that H 1 is true. Define p ( x ) = Pr ( W ( X ) ≥ W ( x ) | S = S ( x ))

  4. . . .. .. . .. . . .. . . .. . . .. . .. . . . .. . . .. . p-Values by conditioning on on sufficient statistic (not necessarily including alternative hypothesis). If the null hypothesis is If we consider only the conditional distribution, by Theorem 8.3.27, this is a valid p-value, meaning that Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . .. .. . . .. . . .. . . .. . . . . . .. . . . .. . . .. . 5 / 1 . .. . . .. . . .. Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ . Again, let W ( X ) denote a test statistic where large value give evidence that H 1 is true. Define p ( x ) = Pr ( W ( X ) ≥ W ( x ) | S = S ( x )) Pr ( p ( X ) ≤ α | S = s ) ≤ α

  5. p n p n p n . . X pmf of X p . Then the join Under H , if we let p denote the common value of p . . . . . . f x . Solution . . . Problem . Example - Fisher’s Exact Test . .. . is n x p p x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x x n x x .. n x n x p x x n x p x x .. . . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . . . . . .. . . .. . . .. . . . .. . .. . . .. . . .. . . .. 6 / 1 Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function.

  6. p n p n p n Problem x p f x . . Solution . . . . x Example - Fisher’s Exact Test . .. . . .. . . .. n . p x x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x x n p x . x n x n x p x x n x .. . .. . . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . . .. . .. .. . . .. . . 6 / 1 Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is

  7. p n . Problem . Example - Fisher’s Exact Test . .. . . .. . . . .. . .. .. . . .. . . . x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x n Solution x p x x n x n . . . . .. . .. . . . .. . . .. . . .. . . .. . . .. . . . 6 / 1 . . . .. . . . . .. . .. .. . . .. . .. . . .. Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) f ( x 1 , x 2 | p ) = p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 x 1 x 2

  8. . .. .. . . .. . . . . . .. . . .. . . . .. . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X is a sufficient statistic under H . X Therefore S . . Solution . . . Problem . Example - Fisher’s Exact Test .. .. . .. .. . . .. . .. . . . .. . . .. . . . . .. .. . . .. . . .. . . . 6 / 1 . . . . .. . .. Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) f ( x 1 , x 2 | p ) = p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 x 1 x 2 ( n 1 )( n 2 ) p x 1 + x 2 (1 − p ) n 1 + n 2 − x 1 − x 2 = x 1 x 2

  9. . .. .. . . .. .. . . . . .. . . .. . . .. .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . . Solution . . . Problem . Example - Fisher’s Exact Test . .. . . . . . . . .. . . .. . . . .. . . .. . . .. 6 / 1 . . . .. . . .. .. . .. . .. . . .. . . Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) f ( x 1 , x 2 | p ) = p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 x 1 x 2 ( n 1 )( n 2 ) p x 1 + x 2 (1 − p ) n 1 + n 2 − x 1 − x 2 = x 1 x 2 Therefore S = X 1 + X 2 is a sufficient statistic under H 0 .

  10. . . f X s is a hypergeometric distribution. X given S The conditional distribution of Solution - Fisher’s Exact Test (cont’d) . .. . .. n . . .. . . .. . . x s x .. x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang f j s x j s min n p x n x is x Thus, the p-value conditional on the sufficient statistic s s n n x s .. . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . .. .. . . .. . . 7 / 1 Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 .

  11. . .. .. . . .. . . . . . .. . .. .. . . . .. . s April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang f j s x j min n . x p x x is x Thus, the p-value conditional on the sufficient statistic s s Solution - Fisher’s Exact Test (cont’d) .. . . .. .. .. . . .. . . . . . .. . . .. . . . 7 / 1 .. . . . .. . . .. . . .. . . .. . . .. . Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 . The conditional distribution of X 1 given S = s is a hypergeometric distribution. ( n 1 )( n 2 ) s − x 1 f ( X 1 = x 1 | s ) = x 1 ( n 1 + n 2 )

  12. . .. . .. . . .. . .. .. . . .. . . . .. . .. . . .. . . .. . Solution - Fisher’s Exact Test (cont’d) s Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . . .. . . .. . . . . . .. . . .. . . .. . . .. . . .. . . 7 / 1 .. . .. . . . .. Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 . The conditional distribution of X 1 given S = s is a hypergeometric distribution. ( n 1 )( n 2 ) s − x 1 f ( X 1 = x 1 | s ) = x 1 ( n 1 + n 2 ) Thus, the p-value conditional on the sufficient statistic s = x 1 + x 2 is min ( n 1 , s ) ∑ p ( x 1 , x 2 ) = f ( j | s ) j = x 1

  13. • Two-sided interval L X • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . .. . . . Interval Estimator . Interval Estimation . .. . . . . . .. . . .. . . . U X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X U X Three types of intervals . an interval estimator of Then we call L X . U X L X that U X . Based on the observed sample x , we can make an inference L X U X , where L X and U X are functions of sample X and Let L X .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . 8 / 1 ˆ θ ( X ) is usually represented as a point estimator

  14. • Two-sided interval L X • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . .. .. . . .. . . .. . . Interval Estimation . . .. . . . Interval Estimator . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X U X Three types of intervals an interval estimator of . U X Then we call L X U X L X that . . .. .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . 8 / 1 . . . .. . . .. . . .. . .. . . .. . . .. ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference

  15. • Two-sided interval L X • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . . . .. . . .. . . .. .. . .. . . .. . . . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X U X Three types of intervals an interval estimator of Interval Estimation U X Then we call L X that . . Interval Estimator . .. . .. . . . .. . . .. . .. . . . .. . . .. . . .. 8 / 1 .. . . . .. . . . . . . .. .. . . . .. . .. ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )]

  16. • Two-sided interval L X • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . . .. . . .. . . .. .. . . .. . .. . .. . that April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X U X Three types of intervals . . . Interval Estimator . Interval Estimation . . .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. . . . .. . . .. . . .. . . .. . . .. . 8 / 1 ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )] Then we call [ L ( X ) , U ( X )] an interval estimator of θ .

  17. • Two-sided interval L X • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . . .. . . .. . . .. .. . . .. . .. . .. . that April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X U X Three types of intervals . . . Interval Estimator . Interval Estimation . . .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. . . . .. . . .. . . .. . . .. . . .. . 8 / 1 ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )] Then we call [ L ( X ) , U ( X )] an interval estimator of θ .

  18. • One-sided (with lower-bound) interval L X • One-sided (with upper-bound) interval . . .. . . .. . . .. . . .. . . .. . . .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X Three types of intervals that . . Interval Estimator . Interval Estimation . .. . . .. .. .. .. . . .. . . . . . .. . . .. . . . . .. . . .. . . .. . . .. 8 / 1 . . .. . . .. . ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )] Then we call [ L ( X ) , U ( X )] an interval estimator of θ . • Two-sided interval [ L ( X ) , U ( X )]

  19. • One-sided (with upper-bound) interval . .. .. . . .. . . . . . .. . . .. . . .. .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X Three types of intervals that . . Interval Estimator . Interval Estimation . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. .. 8 / 1 . .. . . .. . . ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )] Then we call [ L ( X ) , U ( X )] an interval estimator of θ . • Two-sided interval [ L ( X ) , U ( X )] • One-sided (with lower-bound) interval [ L ( X ) , ∞ )

  20. . . . . .. . . .. . . .. . . .. . . .. . . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang Three types of intervals that . Interval Estimator .. . Interval Estimation . .. . . .. .. . . . . .. . . .. . . .. . . .. . . .. .. . . . . .. . . .. .. 8 / 1 . .. . . .. . . ˆ θ ( X ) is usually represented as a point estimator Let [ L ( X ) , U ( X )] , where L ( X ) and U ( X ) are functions of sample X and L ( X ) ≤ U ( X ) . Based on the observed sample x , we can make an inference θ ∈ [ L ( X ) , U ( X )] Then we call [ L ( X ) , U ( X )] an interval estimator of θ . • Two-sided interval [ L ( X ) , U ( X )] • One-sided (with lower-bound) interval [ L ( X ) , ∞ ) • One-sided (with upper-bound) interval ( −∞ , U ( X )]

  21. Pr X : X . . 2. An interval estimator of : X 1. A point estimator of i.i.d. Let X i Example .. Pr . . .. . . .. . . .. X X . Z April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n P n n X Pr n n X n Pr X Pr X Pr X . .. .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . 9 / 1 ∼ N ( µ, 1) . Define

  22. : X . . 2. An interval estimator of i.i.d. Let X i Example . .. . .. Pr . . .. . . .. . . X X . Z April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n P n n X Pr n n X n Pr X Pr X Pr X .. .. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . .. .. . . .. . . 9 / 1 ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0

  23. . .. i.i.d. Let X i Example . .. . . . X . .. . . .. . . .. Pr X . Z April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n P n n Pr X Pr n n X n Pr X Pr X .. . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 9 / 1 . . . .. . . .. . . .. . .. . . .. . . .. . ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0 2. An interval estimator of µ : [ X − 1 , X + 1]

  24. . . .. . . .. . . .. . Example .. . . .. . .. .. . Let X i . n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n P Z i.i.d. n Pr n n X n Pr X Pr . . .. . . . .. . . .. . .. .. . . .. . . .. . . . 9 / 1 . .. . .. . . .. . . .. . . . . .. . . .. . ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0 2. An interval estimator of µ : [ X − 1 , X + 1] Pr ( µ ∈ [ X − 1 , X + 1]) = Pr ( X − 1 ≤ µ ≤ X + 1)

  25. . . . . .. . . .. . .. . . . .. . .. .. . .. Example .. n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n P Z Let X i n Pr n n X n Pr i.i.d. . . . .. . .. . . .. . . . . . .. . . .. . . . 9 / 1 .. . .. . . .. . . .. . . .. . .. . . . .. . ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0 2. An interval estimator of µ : [ X − 1 , X + 1] Pr ( µ ∈ [ X − 1 , X + 1]) = Pr ( X − 1 ≤ µ ≤ X + 1) = Pr ( µ − 1 ≤ X ≤ µ + 1)

  26. . . . . .. . . .. . . .. . . .. . . .. .. . . P April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where Z as n n .. Z n Pr i.i.d. Let X i Example . . .. .. .. .. . . . . . . . . .. . . .. . . . .. .. . . .. . . .. . . .. . . .. 9 / 1 . . .. . ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0 2. An interval estimator of µ : [ X − 1 , X + 1] Pr ( µ ∈ [ X − 1 , X + 1]) = Pr ( X − 1 ≤ µ ≤ X + 1) = Pr ( µ − 1 ≤ X ≤ µ + 1) Pr ( −√ n ≤ √ n ( X − µ ) ≤ √ n ) =

  27. . . .. . . .. .. . .. . . .. . . .. . .. . . . .. . . .. . Example Let X i i.i.d. P Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . .. .. . . .. . . .. . . . . . .. . . .. . . . .. . . . .. 9 / 1 . .. . . .. . . .. ∼ N ( µ, 1) . Define 1. A point estimator of µ : X Pr ( X = µ ) = 0 2. An interval estimator of µ : [ X − 1 , X + 1] Pr ( µ ∈ [ X − 1 , X + 1]) = Pr ( X − 1 ≤ µ ≤ X + 1) = Pr ( µ − 1 ≤ X ≤ µ + 1) Pr ( −√ n ≤ √ n ( X − µ ) ≤ √ n ) = Pr ( −√ n ≤ Z ≤ √ n ) = → 1 as n → ∞ , where Z ∼ N (0 , 1) .

  28. . . L X Pr defined as . . Definition : Coverage Probability . Definitions .. In other words, the probability of a random variable in interval . . .. . . .. . . .. U X L X . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X L X inf Pr Confidence coefficient is defined as . . U X . . . . . Definition: Confidence Coefficient . . covers the parameter . .. .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . 10 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , its coverage probability is

  29. . . . . Definition : Coverage Probability . Definitions . .. . .. In other words, the probability of a random variable in interval . . .. . . .. . . defined as L X .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X L X inf Pr Confidence coefficient is defined as . . U X . . . . . Definition: Confidence Coefficient . . covers the parameter .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . .. . . . .. . . .. . . .. . .. . . .. . . .. . 10 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , its coverage probability is Pr ( θ ∈ [ L ( X ) , U ( X )])

  30. . . . Definitions . .. . . .. . . .. . . .. . . .. . Definition : Coverage Probability . .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X L X inf Pr Confidence coefficient is defined as . . defined as . . . . . Definition: Confidence Coefficient . In other words, the probability of a random variable in interval .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . 10 / 1 . .. .. . . .. . . .. . . . .. . .. . . .. . . Given an interval estimator [ L ( X ) , U ( X )] of θ , its coverage probability is Pr ( θ ∈ [ L ( X ) , U ( X )]) [ L ( X ) , U ( X )] covers the parameter θ .

  31. . . . . .. . . .. . .. . . . .. . . .. . .. Definitions .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang U X L X inf Pr Confidence coefficient is defined as . . Definition: Confidence Coefficient . In other words, the probability of a random variable in interval defined as . . Definition : Coverage Probability .. . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . .. . .. . . . .. . . .. 10 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , its coverage probability is Pr ( θ ∈ [ L ( X ) , U ( X )]) [ L ( X ) , U ( X )] covers the parameter θ .

  32. . .. .. . . .. . . . . . .. . . .. . . . .. . Definition: Confidence Coefficient April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang inf Confidence coefficient is defined as . . . . In other words, the probability of a random variable in interval defined as . . Definition : Coverage Probability . Definitions .. .. . .. .. . . .. . . . . . .. . . .. . . .. . .. .. . . .. . . .. . . 10 / 1 . . . .. . . .. . Given an interval estimator [ L ( X ) , U ( X )] of θ , its coverage probability is Pr ( θ ∈ [ L ( X ) , U ( X )]) [ L ( X ) , U ( X )] covers the parameter θ . θ ∈ Ω Pr ( θ ∈ [ L ( X ) , U ( X )])

  33. where X are random samples from f X x . . . . Definition : Confidence Interval . Definitions . .. . .. Definition: Expected Length . . .. . . .. . . . . .. , its expected length is April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang average length of the interval estimator. . In other words, it is the L X E U X defined as of . U X Given an interval estimator L X . . . . . . .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. 11 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , if its confidence coefficient is 1 − α , we call it a (1 − α ) confidence interval

  34. where X are random samples from f X x . . . .. . . .. . . .. .. . .. . . .. . . Definitions . defined as April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang average length of the interval estimator. . In other words, it is the L X E U X . .. . Definition: Expected Length . . . Definition : Confidence Interval . .. . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . .. . 11 / 1 . .. . . .. . . .. Given an interval estimator [ L ( X ) , U ( X )] of θ , if its confidence coefficient is 1 − α , we call it a (1 − α ) confidence interval Given an interval estimator [ L ( X ) , U ( X )] of θ , its expected length is

  35. where X are random samples from f X x . .. .. . . .. . . . . . .. . . .. . . . .. . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang average length of the interval estimator. . In other words, it is the defined as . . Definition: Expected Length . . . Definition : Confidence Interval . Definitions .. .. . .. .. . . .. . . . . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . .. . 11 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , if its confidence coefficient is 1 − α , we call it a (1 − α ) confidence interval Given an interval estimator [ L ( X ) , U ( X )] of θ , its expected length is E [ U ( X ) − L ( X )]

  36. . . . . .. . . .. . . .. . . .. . . .. .. . . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang average length of the interval estimator. defined as . Definition: Expected Length .. . . . Definition : Confidence Interval . Definitions . . .. .. .. . . . .. . . . . . .. . . .. . . . .. .. . . .. . . .. . . .. . . .. . . .. . 11 / 1 Given an interval estimator [ L ( X ) , U ( X )] of θ , if its confidence coefficient is 1 − α , we call it a (1 − α ) confidence interval Given an interval estimator [ L ( X ) , U ( X )] of θ , its expected length is E [ U ( X ) − L ( X )] where X are random samples from f X ( x | θ ) . In other words, it is the

  37. . . .. . . .. . . .. . . .. . . .. . .. . A confidence interval can be obtained by inverting the acceptance region April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang intervals (or confidence sets). There is a one-to-one correspondence between tests and confidence of a test. How to construct confidence interval? . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . .. . . . .. . . .. 12 / 1

  38. . . .. . . .. . . .. . . .. . . .. . .. . A confidence interval can be obtained by inverting the acceptance region April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang intervals (or confidence sets). There is a one-to-one correspondence between tests and confidence of a test. How to construct confidence interval? . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . .. . . . .. . . .. 12 / 1

  39. . .. Equivalently, we accept H if z n X i.i.d. X i Example . . n . .. . . .. . . .. . X z .. nz April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z x Acceptance region is X . nz z n X z . hypothesis because we believe our data ”agrees with” the Accepting H . .. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . . .. . .. . . .. . . 13 / 1 ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if

  40. . . X Equivalently, we accept H if i.i.d. X i Example . .. . .. z . . .. . .. .. . . n . . nz April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z x Acceptance region is X Accepting H nz z n X z . hypothesis because we believe our data ”agrees with” the .. . . . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. 13 / 1 . . . . .. . . .. . .. . .. . . .. . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � �

  41. . . Example . .. . . .. . .. i.i.d. .. . .. . . .. . . X i Accepting H . Acceptance region is April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z x nz because we believe our data ”agrees with” the X nz z n X z . hypothesis .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . . 13 / 1 . .. . .. . . .. . . . .. . .. . . .. . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � � � � � X − θ 0 � ≤ z α /2 . � σ / √ n � Equivalently, we accept H 0 if

  42. . .. . . .. . . .. . .. . . . .. . . .. . .. Example .. Acceptance region is April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z x nz X i X nz z n X z i.i.d. . . . .. . .. . . .. . . . . . .. . . .. . . . 13 / 1 .. .. .. . . .. . . . .. . . . . .. . .. . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � � � � � X − θ 0 � ≤ z α /2 . � σ / √ n � Equivalently, we accept H 0 if Accepting H 0 : θ = θ 0 because we believe our data ”agrees with” the hypothesis θ = θ 0 .

  43. . . . . .. . .. .. . . .. . . .. . . .. .. . . x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z Acceptance region is .. nz X nz i.i.d. X i Example . . . .. .. . . .. . . . . . . .. . . .. . . .. 13 / 1 . .. . . .. . . .. . . . .. . . .. . . .. ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � � � � � X − θ 0 � ≤ z α /2 . � σ / √ n � Equivalently, we accept H 0 if Accepting H 0 : θ = θ 0 because we believe our data ”agrees with” the hypothesis θ = θ 0 . X − θ 0 − z α /2 ≤ ≤ z α /2 σ / √ n

  44. . .. .. .. . .. . . . . . .. . . .. . . .. .. x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n z x n z Acceptance region is . X i.i.d. X i Example . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 13 / 1 . .. . .. . . .. . .. . . . . .. . . .. ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � � � � � X − θ 0 � ≤ z α /2 . � σ / √ n � Equivalently, we accept H 0 if Accepting H 0 : θ = θ 0 because we believe our data ”agrees with” the hypothesis θ = θ 0 . X − θ 0 − z α /2 ≤ ≤ z α /2 σ / √ n θ 0 − σ ≤ θ 0 + σ √ nz α /2 ≤ √ nz α /2

  45. . . .. . . .. . . .. . . .. . . .. . .. . X i April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang Acceptance region is X i.i.d. Example .. . .. . . .. . . . .. . . .. . . .. . .. .. . . . .. . . . 13 / 1 . . . . . .. . . .. .. . . .. . . .. ∼ N ( θ, σ 2 ) where σ 2 is known. Consider H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 . As previously shown, level α LRT test reject H 0 if and only if � � X − θ 0 � � σ / √ n � > z α /2 � � � � � � X − θ 0 � ≤ z α /2 . � σ / √ n � Equivalently, we accept H 0 if Accepting H 0 : θ = θ 0 because we believe our data ”agrees with” the hypothesis θ = θ 0 . X − θ 0 − z α /2 ≤ ≤ z α /2 σ / √ n θ 0 − σ ≤ θ 0 + σ √ nz α /2 ≤ √ nz α /2 { } σ σ x : θ 0 − √ n z α /2 ≤ x ≤ θ 0 + √ n z α /2

  46. Therefore, X . Example (cont’d) . .. . . .. . . Pr .. . . .. . . .. . Pr nz X n z April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang confidence interval (CI). is n z X nz .. X nz X Pr is arbitrary, Since nz X . .. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 14 / 1 . . . .. . . .. . .. . .. .. . . . . .. . As this is size α test, the probability of accepting H 0 is 1 − α . ( ) θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ 1 − α √ nz α /2 =

  47. Therefore, X . . . .. . . .. . . . .. . .. .. . . .. .. Pr Example (cont’d) n z April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang confidence interval (CI). is n z X nz . X nz X Pr is arbitrary, Since Pr . . .. . . . .. . . .. . .. .. . . .. . . .. . . . 14 / 1 . .. . . .. . . .. . . . .. . . . .. . . .. As this is size α test, the probability of accepting H 0 is 1 − α . ( ) θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ 1 − α √ nz α /2 = ( ) X − σ √ nz α /2 ≤ θ 0 ≤ X + σ √ nz α /2 =

  48. Therefore, X . . .. . . .. .. . .. .. . . .. . . .. . . . X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang confidence interval (CI). is n z n z . Pr Pr Pr Example (cont’d) . .. . . .. .. . . .. . . . . . . .. . . .. . . .. 14 / 1 . . . .. . . .. .. . . . . .. . .. . . .. As this is size α test, the probability of accepting H 0 is 1 − α . ( ) θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ 1 − α √ nz α /2 = ( ) X − σ √ nz α /2 ≤ θ 0 ≤ X + σ √ nz α /2 = Since θ 0 is arbitrary, ( ) X − σ √ nz α /2 ≤ θ ≤ X + σ √ nz α /2 1 − α =

  49. . . .. . . .. . . .. . . .. .. . .. . .. . . . .. . . .. . Example (cont’d) Pr Pr Pr Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . .. .. . . .. . . . . . .. . . .. . . .. . . . .. . . . .. 14 / 1 . .. . . .. . . .. As this is size α test, the probability of accepting H 0 is 1 − α . ( ) θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ 1 − α √ nz α /2 = ( ) X − σ √ nz α /2 ≤ θ 0 ≤ X + σ √ nz α /2 = Since θ 0 is arbitrary, ( ) X − σ √ nz α /2 ≤ θ ≤ X + σ √ nz α /2 1 − α = σ σ Therefore, [ X − √ n z α /2 , X + √ n z α /2 ] is (1 − α ) confidence interval (CI).

  50. . . .. . . .. . . .. . . .. . . .. . . .. . Theorem 9.2.2 . by A April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . . Then the test has level C x x define the acceptance region of a test for the hypothesis H . , , for any confidence set for 2 Conversely, if C X is a . . . . .. . .. . . . .. . . .. . .. . . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . .. . . .. 15 / 1 Confidence intervals and level α test 1 For each θ 0 ∈ Ω , let A ( θ 0 ) be the acceptance region of a level α test of H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 Define a set C ( X ) = { θ : x ∈ A ( θ ) } , then the random set C ( X ) is a 1 − α confidence set.

  51. . . . . .. . . .. . . .. . . .. .. . .. . . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . . . . .. Theorem 9.2.2 . . .. . . .. . . . . .. .. . . .. . . .. . . .. . . .. . . . . . .. . . .. .. 15 / 1 . .. . . .. . . Confidence intervals and level α test 1 For each θ 0 ∈ Ω , let A ( θ 0 ) be the acceptance region of a level α test of H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 Define a set C ( X ) = { θ : x ∈ A ( θ ) } , then the random set C ( X ) is a 1 − α confidence set. 2 Conversely, if C ( X ) is a (1 − α ) confidence set for θ , for any θ 0 , define the acceptance region of a test for the hypothesis H 0 : θ = θ 0 by A ( θ 0 ) = { x : θ 0 ∈ C ( x ) } . Then the test has level α .

  52. . .. .. . . .. . . . . . .. . . .. .. . . .. . nz April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nz X nz X X . nz C X The confidence set C X is a subset of the parameter space sample space i.i.d. For X i Example .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. . . . .. . . .. . . .. . .. . . . .. . 16 / 1 ∼ N ( θ, σ 2 ) , the acceptance region A ( θ 0 ) is a subset of the { } x : θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ √ nz α /2 A ( θ 0 ) =

  53. . .. .. . . .. . . . . . .. . . .. . . .. .. X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nz X nz sample space . i.i.d. For X i Example . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. 16 / 1 . . . . .. . . .. ∼ N ( θ, σ 2 ) , the acceptance region A ( θ 0 ) is a subset of the { } x : θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ √ nz α /2 A ( θ 0 ) = The confidence set C ( X ) is a subset of the parameter space { } θ : θ − σ √ nz α /2 ≤ X ≤ θ + σ √ nz α /2 C ( X ) =

  54. . . .. . . .. . . .. .. . .. . . .. . .. . . . .. . . .. . Example For X i i.i.d. sample space Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . .. .. . . .. . . . . . .. . . .. . . .. . . . .. . . . .. 16 / 1 . .. . . .. . . .. ∼ N ( θ, σ 2 ) , the acceptance region A ( θ 0 ) is a subset of the { } x : θ 0 − σ √ nz α /2 ≤ X ≤ θ 0 + σ √ nz α /2 A ( θ 0 ) = The confidence set C ( X ) is a subset of the parameter space { } θ : θ − σ √ nz α /2 ≤ X ≤ θ + σ √ nz α /2 C ( X ) = { } θ : X − σ √ nz α /2 ≤ θ ≤ X + σ √ nz α /2 =

  55. . .. two-sided CI L X 1 To obtain . . 9.2.2 is an interval, but quite often There is no guarantee that the confidence set obtained from Theorem Confidence set and confidence interval . . acceptance region of a level . .. . . .. . . .. . U X , we invert the test for H .. 3 To obtain a upper-bounded CI April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where vs. H acceptance region of a test for H U X , then we invert the . vs. H . . , where vs. H acceptance region of a test for H , then we invert the 2 To obtain a lower-bounded CI L X . . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . . .. . . .. . . .. . .. . . . .. . . .. . . .. 17 / 1

  56. . . There is no guarantee that the confidence set obtained from Theorem Confidence set and confidence interval . .. . . .. . . .. . . .. . . .. . 9.2.2 is an interval, but quite often . .. 3 To obtain a upper-bounded CI April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where vs. H acceptance region of a test for H U X , then we invert the . . . . , where vs. H acceptance region of a test for H , then we invert the 2 To obtain a lower-bounded CI L X . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . . 17 / 1 . . .. . . .. . . .. . .. . . .. . . .. . . .. 1 To obtain (1 − α ) two-sided CI [ L ( X ) , U ( X )] , we invert the acceptance region of a level α test for H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0

  57. . . . . .. . . .. . .. . . . .. . . .. .. .. Confidence set and confidence interval .. U X , then we invert the April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . , where vs. H acceptance region of a test for H 3 To obtain a upper-bounded CI There is no guarantee that the confidence set obtained from Theorem . . . . . . 9.2.2 is an interval, but quite often . . . .. . .. . . .. . . . .. . .. . . .. . . . . . .. .. . . .. . . .. . . . . . .. . . .. 17 / 1 1 To obtain (1 − α ) two-sided CI [ L ( X ) , U ( X )] , we invert the acceptance region of a level α test for H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 2 To obtain a lower-bounded CI [ L ( X ) , ∞ ) , then we invert the acceptance region of a test for H 0 : θ = θ 0 vs. H 1 : θ > θ 0 , where Ω = { θ : θ ≥ θ 0 } .

  58. . .. .. . . .. . . . . . .. . . .. . . .. .. . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . . . . . . 9.2.2 is an interval, but quite often There is no guarantee that the confidence set obtained from Theorem Confidence set and confidence interval . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . .. . . . . . .. . . .. 17 / 1 1 To obtain (1 − α ) two-sided CI [ L ( X ) , U ( X )] , we invert the acceptance region of a level α test for H 0 : θ = θ 0 vs. H 1 : θ ̸ = θ 0 2 To obtain a lower-bounded CI [ L ( X ) , ∞ ) , then we invert the acceptance region of a test for H 0 : θ = θ 0 vs. H 1 : θ > θ 0 , where Ω = { θ : θ ≥ θ 0 } . 3 To obtain a upper-bounded CI ( −∞ , U ( X )] , then we invert the acceptance region of a test for H 0 : θ = θ 0 vs. H 1 : θ < θ 0 , where Ω = { θ : θ ≤ θ 0 } .

  59. . . . . .. . . .. . .. . . . .. . . .. . .. Example .. two-sided CI for April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang upper bound for 2 Find . . 1 Find . . . i.i.d. X i . . Problem . .. . .. . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 18 / 1 ∼ N ( µ, σ 2 ) where both parameters are unknown.

  60. . . . . .. . . .. . . .. . . .. . . .. .. . . . April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang . . . i.i.d. .. X i . . Problem . Example . .. . .. .. .. . . .. . . . . . .. . . .. . . . . .. . . .. . . .. . . 18 / 1 .. . . .. . . .. . ∼ N ( µ, σ 2 ) where both parameters are unknown. 1 Find 1 − α two-sided CI for µ 2 Find 1 − α upper bound for µ

  61. . . x A The acceptance region is t n n s X X Example - two-sided CI - Solution .. s x . . .. . . .. . . .. x n .. t n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nt n s x x nt n s x x n t n s x x t n t n n s x x C x The confidence set is . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . 19 / 1 H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if

  62. . . x x A The acceptance region is Example - two-sided CI - Solution . .. . .. n . . .. . .. .. . . s x t n . x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nt n s x x nt n s x t n The confidence set is n s x x t n t n n s x x C x .. . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . . .. .. .. . . .. . . .. . . .. . . . 19 / 1 . H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if � � X − µ 0 � � s X / √ n � > t n − 1 ,α /2 � � �

  63. . . Example - two-sided CI - Solution . .. . . .. .. .. The confidence set is . . .. . . .. . . The acceptance region is C x . s x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nt n s x x nt n x x t n n s x x t n t n n s x .. . . . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. 19 / 1 . . . .. . . .. . .. .. . . .. . . . . H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if � � X − µ 0 � � s X / √ n � > t n − 1 ,α /2 � � � � � { x − µ 0 } � � A ( µ 0 ) = x : s x / √ n � ≤ t n − 1 ,α /2 � � �

  64. . . . .. . . .. . .. .. . . .. . . .. . . .. .. s x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nt n s x x nt n x Example - two-sided CI - Solution t n n s x x t n The confidence set is The acceptance region is . . . .. . .. . . .. . . . . . .. . . .. . . . 19 / 1 .. .. . . .. . . .. . . .. . . . . . .. .. . H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if � � X − µ 0 � � s X / √ n � > t n − 1 ,α /2 � � � � � { x − µ 0 } � � A ( µ 0 ) = x : s x / √ n � ≤ t n − 1 ,α /2 � � � � � { x − µ } � � C ( x ) = µ : s x / √ n � ≤ t n − 1 ,α /2 � � �

  65. . .. .. . . .. . . . . . .. . . .. . . .. .. nt n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang nt n s x x s x . x The confidence set is The acceptance region is Example - two-sided CI - Solution .. .. . . . . .. . . .. . . . . . . .. . . .. . . .. 19 / 1 . . .. . . .. . . .. . . .. . .. . .. . H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if � � X − µ 0 � � s X / √ n � > t n − 1 ,α /2 � � � � � { x − µ 0 } � � A ( µ 0 ) = x : s x / √ n � ≤ t n − 1 ,α /2 � � � � � { x − µ } � � C ( x ) = µ : s x / √ n � ≤ t n − 1 ,α /2 � � � { µ : − t n − 1 ,α /2 ≤ x − µ } = s x / √ n ≤ t n − 1 ,α /2

  66. . . . .. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. .. Example - two-sided CI - Solution The acceptance region is The confidence set is Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . . . . . .. . . . .. . . .. . . .. . 19 / 1 .. .. . . . .. . . .. . .. . . .. . . H 0 : µ = µ 0 vs H 1 : µ ̸ = µ 0 . The LRT test rejects if and only if � � X − µ 0 � � s X / √ n � > t n − 1 ,α /2 � � � � � { x − µ 0 } � � A ( µ 0 ) = x : s x / √ n � ≤ t n − 1 ,α /2 � � � � � { x − µ } � � C ( x ) = µ : s x / √ n � ≤ t n − 1 ,α /2 � � � { µ : − t n − 1 ,α /2 ≤ x − µ } = s x / √ n ≤ t n − 1 ,α /2 { } µ : x − s x √ nt n − 1 ,α /2 ≤ µ ≤ x + s x √ nt n − 1 ,α /2 =

  67. . . Example - upper-bounded CI - Solution . .. . . .. . .. x . . .. . . .. . . LRT statistic is L .. , and April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n X i i n , x , and Within restricted to is the MLE , and is the MLE restricted to where x L .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 20 / 1 The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 .

  68. . . Example - upper-bounded CI - Solution . .. . . .. . .. x . . .. . . .. . .. LRT statistic is L . , and April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n X i i n , x , and Within restricted to is the MLE , and is the MLE restricted to where x L .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . 20 / 1 .. . . . .. . . .. . . .. . .. . . .. . . The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 . { ( µ, σ 2 ) : µ = µ 0 , σ 2 > 0 } Ω 0 =

  69. . . Example - upper-bounded CI - Solution . .. . . .. . .. x . . .. . . .. .. . LRT statistic is L . , and April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n X i i n , x , and Within restricted to is the MLE , and is the MLE restricted to where x L .. . . . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. 20 / 1 .. . . . .. . . . . .. . . . .. . . .. The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 . { ( µ, σ 2 ) : µ = µ 0 , σ 2 > 0 } Ω 0 = { ( µ, σ 2 ) : µ ≤ µ 0 , σ 2 > 0 } Ω =

  70. . . . .. . . .. . .. .. . .. .. . . .. . . . .. , and April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n X i i n , Example - upper-bounded CI - Solution , and Within restricted to is the MLE , and is the MLE restricted to where LRT statistic is . . . .. . .. . . .. . . . . . .. . . .. . . . 20 / 1 .. .. . . .. . . . . .. . . . . . .. .. . .. The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 . { ( µ, σ 2 ) : µ = µ 0 , σ 2 > 0 } Ω 0 = { ( µ, σ 2 ) : µ ≤ µ 0 , σ 2 > 0 } Ω = σ 2 0 | x ) L (ˆ µ 0 , ˆ λ ( x ) = σ 2 | x ) L (ˆ µ, ˆ

  71. . .. .. . . .. .. . . . . .. . . .. . . .. .. n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang n X i i , and . , Within LRT statistic is Example - upper-bounded CI - Solution . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 20 / 1 . . . .. .. . . .. . . .. . .. . .. . . The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 . { ( µ, σ 2 ) : µ = µ 0 , σ 2 > 0 } Ω 0 = { ( µ, σ 2 ) : µ ≤ µ 0 , σ 2 > 0 } Ω = σ 2 0 | x ) L (ˆ µ 0 , ˆ λ ( x ) = σ 2 | x ) L (ˆ µ, ˆ σ 2 σ 2 ) is the MLE where (ˆ µ 0 , ˆ 0 ) is the MLE restricted to Ω 0 , and (ˆ µ, ˆ restricted to Ω , and

  72. . . . .. . . .. . . .. . . .. . .. .. . .. .. . . .. . . .. . Example - upper-bounded CI - Solution LRT statistic is n Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 . . . . . . .. . . . .. . . .. . . .. . 20 / 1 .. . .. . . . .. .. . . .. . . .. . . The CI is ( −∞ , U ( X )] . We need to invert a testing procedure for H 0 : µ = µ 0 vs H 1 : µ < µ 0 . { ( µ, σ 2 ) : µ = µ 0 , σ 2 > 0 } Ω 0 = { ( µ, σ 2 ) : µ ≤ µ 0 , σ 2 > 0 } Ω = σ 2 0 | x ) L (ˆ µ 0 , ˆ λ ( x ) = σ 2 | x ) L (ˆ µ, ˆ σ 2 σ 2 ) is the MLE where (ˆ µ 0 , ˆ 0 ) is the MLE restricted to Ω 0 , and (ˆ µ, ˆ i =1 ( X i − µ 0 ) 2 ∑ n σ 2 restricted to Ω , and Within Ω 0 , ˆ µ 0 = µ 0 , and ˆ 0 =

  73. if X if X if X n s X n s X n n X i i n n X X i i . X if X . .. . . .. . . .. Example - upper bounded CI - Solution (cont’d) n x if X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang if X n X n n X .. Xi i n exp n Xi i n exp . . .. .. .. . . .. . . .. . . . . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . . .. . . .. . . .. . 21 / 1 Within Ω , the MLE is

  74. if X if X n s X n s X .. if X n X i i n n Example - upper bounded CI - Solution (cont’d) . . . . .. . . .. .. . .. x exp n if X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang if X n X n n X . Xi i n exp n Xi i n . . .. . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. 21 / 1 . . .. . Within Ω , the MLE is { i =1 ( X i − X ) 2 σ 2 = ∑ n if X ≤ µ 0 µ = X ˆ ˆ

  75. if X if X n s X n s X x n n Example - upper bounded CI - Solution (cont’d) . .. . . . .. n . .. . . .. . . . n exp n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang if X n X n if X . X Xi i n exp n Xi i .. .. . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . . 21 / 1 .. . . . . .. . .. .. . . .. . . . Within Ω , the MLE is { i =1 ( X i − X ) 2 σ 2 = ∑ n if X ≤ µ 0 µ = X ˆ ˆ i =1 ( X i − µ 0 ) 2 σ 2 = ∑ n µ = µ 0 ˆ ˆ if X > µ 0

  76. n s X n s X . .. . . .. . . .. . . . .. . . .. . . . .. n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang if X n X n .. if X exp exp n n .. Example - upper bounded CI - Solution (cont’d) . 21 / 1 . . . . .. . . .. . .. .. . . . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. Within Ω , the MLE is { i =1 ( X i − X ) 2 σ 2 = ∑ n if X ≤ µ 0 µ = X ˆ ˆ i =1 ( X i − µ 0 ) 2 σ 2 = ∑ n µ = µ 0 ˆ ˆ if X > µ 0  1 if X > µ 0   i =1( Xi − µ 0)2 ( ) n { } ∑ n  1 √ λ ( x ) = − σ 2 2 πσ 2 2ˆ 0 if X ≤ µ 0 i =1( Xi − X )2 ( ) n { }  ∑ n 1  √ −  σ 2 2 πσ 2 2ˆ 0

  77. . .. . . .. . . .. . . .. . . .. . . . . n April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X exp exp .. . Example - upper bounded CI - Solution (cont’d) . .. . . .. .. n . . . .. . . .. . .. .. .. . . .. . . . 21 / 1 . .. . . . . .. . . . .. .. . . .. . . Within Ω , the MLE is { i =1 ( X i − X ) 2 σ 2 = ∑ n if X ≤ µ 0 µ = X ˆ ˆ i =1 ( X i − µ 0 ) 2 σ 2 = ∑ n µ = µ 0 ˆ ˆ if X > µ 0  1 if X > µ 0   i =1( Xi − µ 0)2 ( ) n { } ∑ n  1 √ λ ( x ) = − σ 2 2 πσ 2 2ˆ 0 if X ≤ µ 0 i =1( Xi − X )2 ( ) n { }  ∑ n 1  √ −  σ 2 2 πσ 2 2ˆ 0  1 if X > µ 0  = ( ) n n − 1 n s 2 2 if X ≤ µ 0 n − 1  n s 2 X +( X − µ 0 ) 2

  78. n s X n s X .. n n Example - upper bounded CI - Solution (cont’d) . .. . . . X . .. . . .. . . .. . n .. s X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang c n s X X c X c c n s x X n n n n . . .. . .. . . .. . . .. . .. . . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . 22 / 1 For 0 < c < 1 , LRT test rejects H 0 if X ≤ µ 0 and

  79. . .. . .. . . .. . . . X . .. . . .. . . Example - upper bounded CI - Solution (cont’d) c . c April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang c n s X X s X n X c n s x X n n n .. .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 22 / 1 . . . . .. . . .. . .. . . .. . .. . . .. For 0 < c < 1 , LRT test rejects H 0 if X ≤ µ 0 and ( ) n n − 1 n s 2 2 < n − 1 n s 2 X + ( X − µ 0 ) 2

  80. . . . . .. . . .. . .. . . . .. . . .. . .. Example - upper bounded CI - Solution (cont’d) .. c April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang c n s X X s X X X c n x n n c . .. . .. . .. . . .. . . . . . .. . . .. . . . 22 / 1 .. .. . . . .. . . .. . .. . . .. . . . .. . For 0 < c < 1 , LRT test rejects H 0 if X ≤ µ 0 and ( ) n n − 1 n s 2 2 < n − 1 n s 2 X + ( X − µ 0 ) 2   2 n − 1 <   + ( X − µ 0 ) 2 n − 1 s 2

  81. . .. .. . . .. . .. . . . .. . . .. . . . .. . X April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang c n s X X c . n x n n c X Example - upper bounded CI - Solution (cont’d) .. . . .. .. .. . . .. . . . . . .. . . .. . . . 22 / 1 .. . . .. .. . . . .. . . .. . .. . . . . For 0 < c < 1 , LRT test rejects H 0 if X ≤ µ 0 and ( ) n n − 1 n s 2 2 < n − 1 n s 2 X + ( X − µ 0 ) 2   2 n − 1 <   + ( X − µ 0 ) 2 n − 1 s 2 ( X − µ 0 ) 2 c ∗ > s 2

  82. . .. .. . .. .. . . . . . .. . . .. . . .. .. x April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang X c n n . n c X Example - upper bounded CI - Solution (cont’d) . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 22 / 1 . . .. . . .. . . .. .. . .. . . . .. . For 0 < c < 1 , LRT test rejects H 0 if X ≤ µ 0 and ( ) n n − 1 n s 2 2 < n − 1 n s 2 X + ( X − µ 0 ) 2   2 n − 1 <   + ( X − µ 0 ) 2 n − 1 s 2 ( X − µ 0 ) 2 c ∗ > s 2 µ 0 − X c ∗∗ s X / √ n >

  83. . . n s X X Pr Example - upper bounded CI - Solution (cont’d) . .. . .. Pr . . .. . . .. . . c X . Therefore, LRT level April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang t n n s X X test reject H if t n s X t n c c Pr T n c Pr T n c n .. .. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . .. .. . . .. . . 23 / 1 c ∗∗ is chosen to satisfy α = Pr ( reject H 0 | µ 0 )

  84. . . Pr Example - upper bounded CI - Solution (cont’d) . .. . . .. . X .. . . .. . . .. . Pr s X .. test reject H if April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang t n n s X X Therefore, LRT level n t n t n c c Pr T n c Pr T n c . .. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 23 / 1 . . .. . . .. . . .. . . .. . .. . . .. . c ∗∗ is chosen to satisfy α = Pr ( reject H 0 | µ 0 ) ( µ 0 − X ) s X / √ n > c ∗∗ =

  85. . . .. . . .. . . .. . Example - upper bounded CI - Solution (cont’d) .. . . .. . . .. . Pr . test reject H if April 11th, 2013 Biostatistics 602 - Lecture 23 Hyun Min Kang t n n s X X Therefore, LRT level Pr t n t n c c Pr T n c Pr T n . .. .. .. . .. . . .. . . . . . .. . . .. . . . .. . .. . .. . . .. . . .. . . .. . . . . .. . 23 / 1 c ∗∗ is chosen to satisfy α = Pr ( reject H 0 | µ 0 ) ( µ 0 − X ) s X / √ n > c ∗∗ = ( X − µ 0 ) s X / √ n < − c ∗∗ =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend