lecture 22
play

Lecture 22 April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min - PowerPoint PPT Presentation

. . . . .. . . .. . . .. . . .. . . .. . . Lecture 22 April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang April 9th, 2013 Hyun Min Kang p-Values Biostatistics 602 - Statistical Inference .. . . . .. . . ..


  1. . .. .. . . .. . . . . . .. . . .. . . .. .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang . . Definition: p-Value . . . Conclusions from Hypothesis Testing . p-Values . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. 5 / 1 . . .. . . .. . . • Reject H 0 or accept H 0 . • If size of the test is ( α ) small, the decision to reject H 0 is convincing. • If α is large, the decision may not be very convincing. A p-value p ( X ) is a test statistic satisfying 0 ≤ p ( x ) ≤ 1 for every sample point x . Small values of p ( X ) given evidence that H 1 is true. A p-value is valid if, for every θ ∈ Ω 0 and every 0 ≤ α ≤ 1 , Pr ( p ( X ) ≤ α | θ ) ≤ α

  2. • Each reader can choose the • And then can compare the reported p x to • So that each reader can individually determine whether these data lead • The p-value quantifies the evidence against H . • The smaller the p-value, the stronger, the evidence for rejecting H . • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . .. . . .. . . . .. .. . . .. . . . . .. . . .. . Advantage to reporting a test result via a p-value he or she considers appropriate to acceptance or rejection to H . Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. .. .. .. . . .. . . . . . .. . . .. . . . . .. .. . .. . . .. . . . . . .. . . .. . 6 / 1 • The size α does not need to be predefined

  3. • And then can compare the reported p x to • So that each reader can individually determine whether these data lead • The p-value quantifies the evidence against H . • The smaller the p-value, the stronger, the evidence for rejecting H . • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . .. . . .. . . .. . . . .. . . .. .. . . .. . . .. . Advantage to reporting a test result via a p-value to acceptance or rejection to H . Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. . . . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . .. .. . . .. . . 6 / 1 • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate

  4. • So that each reader can individually determine whether these data lead • The p-value quantifies the evidence against H . • The smaller the p-value, the stronger, the evidence for rejecting H . • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . Advantage to reporting a test result via a p-value to acceptance or rejection to H . Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 .. .. . . . . .. . . .. . . .. . . .. . . .. .. . . . . .. . . .. . .. .. . . .. . . 6 / 1 • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate • And then can compare the reported p ( x ) to α

  5. • The smaller the p-value, the stronger, the evidence for rejecting H . • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . .. . .. . . .. . . .. . . .. . .. . . . . . .. . . .. . Advantage to reporting a test result via a p-value Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . 6 / 1 . .. . . .. . . .. • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate • And then can compare the reported p ( x ) to α • So that each reader can individually determine whether these data lead to acceptance or rejection to H 0 . • The p-value quantifies the evidence against H 0 .

  6. • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . . . .. . . .. .. . .. . . .. . . . . .. .. . . .. . . .. . Advantage to reporting a test result via a p-value Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. . .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . 6 / 1 .. . . .. . . .. • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate • And then can compare the reported p ( x ) to α • So that each reader can individually determine whether these data lead to acceptance or rejection to H 0 . • The p-value quantifies the evidence against H 0 . • The smaller the p-value, the stronger, the evidence for rejecting H 0 .

  7. • Rather than just the dichotomous decision ”Accept H ” or ”Reject H ”. . .. . .. . . .. . . .. . . .. . . . .. . .. . . .. . . .. . Advantage to reporting a test result via a p-value Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. . .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . 6 / 1 .. . . .. . . .. • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate • And then can compare the reported p ( x ) to α • So that each reader can individually determine whether these data lead to acceptance or rejection to H 0 . • The p-value quantifies the evidence against H 0 . • The smaller the p-value, the stronger, the evidence for rejecting H 0 . • A p-value reports the results of a test on a more continuous scale

  8. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . Advantage to reporting a test result via a p-value Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 .. .. . . . . .. . . .. . . .. . .. .. . . .. .. . . .. . . . 6 / 1 . . .. . . .. . • The size α does not need to be predefined • Each reader can choose the α he or she considers appropriate • And then can compare the reported p ( x ) to α • So that each reader can individually determine whether these data lead to acceptance or rejection to H 0 . • The p-value quantifies the evidence against H 0 . • The smaller the p-value, the stronger, the evidence for rejecting H 0 . • A p-value reports the results of a test on a more continuous scale • Rather than just the dichotomous decision ”Accept H 0 ” or ”Reject H 0 ”.

  9. . .. .. . . .. . . . . . .. . . .. . . .. .. p x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang Then p X is a valid p-value. W x sup Pr W X . . . Theorem 8.3.27. . Constructing a value p-value . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. 7 / 1 . . .. . . .. . . Let W ( X ) be a test statistic such that large values of W give evidence that H 1 is true. For each sample point x , define

  10. . .. . . .. . . .. . . .. . . .. . . . . Theorem 8.3.27. April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang Then p X is a valid p-value. . . . . Constructing a value p-value . .. . . .. .. .. . . .. . .. . . .. . . .. . . .. . . .. . . . . . .. . .. .. . . .. . . .. . . 7 / 1 Let W ( X ) be a test statistic such that large values of W give evidence that H 1 is true. For each sample point x , define Pr ( W ( X ) ≥ W ( x ) | θ ) p ( x ) = sup θ ∈ Ω 0

  11. . . .. . . .. . . .. . . .. . . .. . .. . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang . . Theorem 8.3.27. Constructing a value p-value . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . . . .. .. . . .. . . .. 7 / 1 Let W ( X ) be a test statistic such that large values of W give evidence that H 1 is true. For each sample point x , define Pr ( W ( X ) ≥ W ( x ) | θ ) p ( x ) = sup θ ∈ Ω 0 Then p ( X ) is a valid p-value.

  12. . . . .. . . .. . .. .. . . .. . . .. . . .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 Find a valid p-value, as a function of x . . . . . . . Problem . Example : Two-sided normal p-value . .. . . .. .. .. . . .. . . . . . .. . . .. . . . . .. .. . .. . . .. . . 8 / 1 . . . .. . . .. . Let X = ( X 1 , · · · , X n ) be a random sample from a N ( θ, σ 2 ) population. Consider testing H 0 : θ = θ 0 versus H 1 : θ ̸ = θ 0 . 1 Construct a size α LRT test.

  13. n s X . sup x Solution - Constructing LRT . .. . . .. . x . .. . . .. . . .. L sup .. For the numerator, the MLE of April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i are and n L n X X i X are and For the denominator, the MLE of x . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . . . .. . . .. . . .. . .. . . . .. . . .. 9 / 1 { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω =

  14. n s X . sup x Solution - Constructing LRT . .. . . .. . x . .. . . .. . . .. L sup . For the numerator, the MLE of April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i are and n L n X X i X are and For the denominator, the MLE of x . .. .. .. .. . . .. . . .. . . . . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . .. . . 9 / 1 { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 =

  15. n s X . . .. . . .. . . .. .. . . .. . .. .. . . Solution - Constructing LRT . For the numerator, the MLE of April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i are and n .. n X X i X are and For the denominator, the MLE of . . . .. . .. . . .. . . . . . .. . . .. . . . 9 / 1 .. .. .. . . .. . . .. . . .. . . . . .. . . { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 = sup { ( θ,σ 2 ): θ = θ 0 ,σ 2 > 0 } L ( θ, σ 2 | x ) λ ( x ) = sup { ( θ,σ 2 ): θ ∈ R ,σ 2 > 0 } L ( θ, σ 2 | x )

  16. n s X . . . .. . . .. . . . .. . . .. . . .. .. . and April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i are For the numerator, the MLE of . n n X X i X Solution - Constructing LRT . .. .. . .. .. .. . . .. . . . . . .. . . .. . . . 9 / 1 .. . . . .. . . .. . . .. . . .. . .. . . { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 = sup { ( θ,σ 2 ): θ = θ 0 ,σ 2 > 0 } L ( θ, σ 2 | x ) λ ( x ) = sup { ( θ,σ 2 ): θ ∈ R ,σ 2 > 0 } L ( θ, σ 2 | x ) For the denominator, the MLE of θ and σ 2 are

  17. . .. .. . . .. . . .. . . .. . . .. . . .. .. and April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i are For the numerator, the MLE of . X n Solution - Constructing LRT . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 9 / 1 . . . . .. . . .. . .. . .. . .. . . .. { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 = sup { ( θ,σ 2 ): θ = θ 0 ,σ 2 > 0 } L ( θ, σ 2 | x ) λ ( x ) = sup { ( θ,σ 2 ): θ ∈ R ,σ 2 > 0 } L ( θ, σ 2 | x ) For the denominator, the MLE of θ and σ 2 are { ˆ θ = X σ 2 = ∑ ( X i − X ) 2 = n − 1 n s 2 ˆ

  18. . . .. . . .. . . .. .. . .. . . .. . .. . n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n X i X Solution - Constructing LRT . . .. . . .. . . . .. . . .. . . .. . . .. .. . . .. . . . 9 / 1 . . . .. . . .. .. . . . .. . . .. . { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 = sup { ( θ,σ 2 ): θ = θ 0 ,σ 2 > 0 } L ( θ, σ 2 | x ) λ ( x ) = sup { ( θ,σ 2 ): θ ∈ R ,σ 2 > 0 } L ( θ, σ 2 | x ) For the denominator, the MLE of θ and σ 2 are { ˆ θ = X σ 2 = ∑ ( X i − X ) 2 = n − 1 n s 2 ˆ For the numerator, the MLE of θ and σ 2 are

  19. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . Solution - Constructing LRT n X n Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. .. . . .. . . .. . . .. .. . . .. . . . 9 / 1 . . .. . . .. . . .. . .. . . . .. . { ( θ, σ 2 ) : θ ∈ R , σ 2 > 0 } Ω = { ( θ, σ 2 ) : θ = θ 0 , σ 2 > 0 } Ω 0 = sup { ( θ,σ 2 ): θ = θ 0 ,σ 2 > 0 } L ( θ, σ 2 | x ) λ ( x ) = sup { ( θ,σ 2 ): θ ∈ R ,σ 2 > 0 } L ( θ, σ 2 | x ) For the denominator, the MLE of θ and σ 2 are { ˆ θ = X σ 2 = ∑ ( X i − X ) 2 = n − 1 n s 2 ˆ For the numerator, the MLE of θ and σ 2 are { ˆ θ 0 = θ 0 ∑ ( X i − θ 0 ) 2 σ 2 ˆ 0 =

  20. . . .. . . .. . . .. . Solution - Constructing and Simplifying the Test .. . . .. . . .. . Combining the results together . c April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang c x i x x i n LRT test rejects H if and only if n x i n x x i c n . .. .. . . . .. . . .. . .. .. . . .. . . .. . . . 10 / 1 . .. . .. . . .. . . .. . . . . .. . . .. . ( ˆ ) n /2 σ 2 λ ( x ) = σ 2 ˆ 0

  21. . . . . .. . . .. . .. . . . .. . . .. . .. Solution - Constructing and Simplifying the Test .. c April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang c x i x x i n Combining the results together n x i n x x i c n . .. . .. . .. . . .. . . . . . .. . . .. . . . 10 / 1 .. . .. . . .. . . .. . . .. . .. . . . .. . ( ˆ ) n /2 σ 2 λ ( x ) = σ 2 ˆ 0 LRT test rejects H 0 if and only if

  22. . . . .. . . .. . .. .. . . .. . . .. . . . .. c April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang c x i x x i n Solution - Constructing and Simplifying the Test n x i n x x i c Combining the results together . .. . .. . .. . . .. . . . . . .. . . .. . . . 10 / 1 .. . . .. . . . . . .. . .. .. . . .. .. . . ( ˆ ) n /2 σ 2 λ ( x ) = σ 2 ˆ 0 LRT test rejects H 0 if and only if ( ˆ ) n /2 σ 2 ≤ σ 2 ˆ 0

  23. . .. .. . . .. . . .. . . .. . . .. . . .. .. x i April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang c x i x c . c Combining the results together Solution - Constructing and Simplifying the Test . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 10 / 1 . . . .. . . .. . .. .. .. . . .. . . . ( ˆ ) n /2 σ 2 λ ( x ) = σ 2 ˆ 0 LRT test rejects H 0 if and only if ( ˆ ) n /2 σ 2 ≤ σ 2 ˆ 0 ) n /2 ( ∑ ( x i − x ) 2 / n ≤ ∑ ( x i − θ 0 ) 2 / n

  24. . . .. . . .. . . .. . .. .. . . .. . .. . . . .. . . .. . Solution - Constructing and Simplifying the Test Combining the results together c c Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . .. . . .. . . .. . .. .. . . . .. . . . 10 / 1 . . . . .. . . . .. . . .. . . .. .. ( ˆ ) n /2 σ 2 λ ( x ) = σ 2 ˆ 0 LRT test rejects H 0 if and only if ( ˆ ) n /2 σ 2 ≤ σ 2 ˆ 0 ) n /2 ( ∑ ( x i − x ) 2 / n ≤ ∑ ( x i − θ 0 ) 2 / n ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − θ 0 ) 2

  25. n x . x i n x Solution - Simplifying the LRT . .. . . .. . x .. . . .. . . .. . . c .. n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang test. size . The next step is specify c to get c s X x i x LRT test rejects H if c n s X x c x .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . .. .. . . .. . . .. . . . . . .. . . .. 11 / 1 ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2

  26. . . .. . . .. . . .. . Solution - Simplifying the LRT .. . . .. .. . .. . n x . n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang test. size . The next step is specify c to get c s X x i x LRT test rejects H if c n s X x c x . . .. . .. . . .. . . .. . .. . . . .. . . .. . . . 11 / 1 . . .. . . .. . .. . . .. . .. . . .. . . ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2 1 c ∗ ≤ 1 + n ( x − θ 0 ) 2 ∑ ( x i − x ) 2

  27. . .. .. . . .. . . . . . .. .. . .. . . . .. . n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang test. size . The next step is specify c to get c s X . x LRT test rejects H if c n s X x Solution - Simplifying the LRT .. . . .. .. .. . . .. . . . . . .. . . .. . . . 11 / 1 .. . . . .. . . .. . . .. . . .. . .. . . ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2 1 c ∗ ≤ 1 + n ( x − θ 0 ) 2 ∑ ( x i − x ) 2 n ( x − θ 0 ) 2 c ∗∗ ≥ ∑ ( x i − x ) 2

  28. . .. .. . . .. . . . . . .. . . .. . . .. .. c April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang test. size . The next step is specify c to get n . s X x LRT test rejects H if Solution - Simplifying the LRT . .. . . .. . .. . . .. . . . . . . .. . . .. . . .. 11 / 1 . .. . . .. .. . . .. . . .. . . .. . . ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2 1 c ∗ ≤ 1 + n ( x − θ 0 ) 2 ∑ ( x i − x ) 2 n ( x − θ 0 ) 2 c ∗∗ ≥ ∑ ( x i − x ) 2 � � x − θ 0 c ∗∗∗ � � s X / √ n ≥ � � � �

  29. . .. .. . . .. . . . . . .. . . .. . . .. .. c April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang test. size . The next step is specify c to get n . s X x LRT test rejects H if Solution - Simplifying the LRT . .. . . .. . .. . . .. . . . . . . .. . . .. . . .. 11 / 1 . .. . . .. .. . . .. . . .. . . .. . . ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2 1 c ∗ ≤ 1 + n ( x − θ 0 ) 2 ∑ ( x i − x ) 2 n ( x − θ 0 ) 2 c ∗∗ ≥ ∑ ( x i − x ) 2 � � x − θ 0 c ∗∗∗ � � s X / √ n ≥ � � � �

  30. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . Solution - Simplifying the LRT Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 .. .. . . . . .. .. . . .. . . .. . . .. . 11 / 1 .. .. . . . . . .. . . .. . . .. . ∑ ( x i − x ) 2 c ∗ ≤ ∑ ( x i − s ) 2 + n ( x − θ 0 ) 2 1 c ∗ ≤ 1 + n ( x − θ 0 ) 2 ∑ ( x i − x ) 2 n ( x − θ 0 ) 2 c ∗∗ ≥ ∑ ( x i − x ) 2 � � x − θ 0 c ∗∗∗ � � s X / √ n ≥ � � � � � � � x − θ 0 � ≥ c ∗∗∗ . The next step is specify c to get s X / √ n � � LRT test rejects H 0 if size α test.

  31. . . .. . . .. . . .. . Pr .. . . .. . . .. . X . LRT test rejects H if and only if April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang t n n s X x Therefore, size s X t n c c T n Pr c n . .. .. . .. . . .. . . .. . .. . . . .. . . .. . . . 12 / 1 .. . .. . . .. . . . . .. . . .. . .. . . Solution - Obtaining size α test Under H 0 X − θ 0 s X / √ n ∼ T n − 1

  32. . .. .. . . .. . . . . .. .. . . .. . . . .. . x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang t n n s X LRT test rejects H if and only if . Therefore, size t n c c T n Pr Pr .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. . . . .. . . .. . . .. . . .. . . 12 / 1 .. . Solution - Obtaining size α test Under H 0 X − θ 0 s X / √ n ∼ T n − 1 (� � X − θ 0 ) � ≥ c ∗∗∗ � � s X / √ n = α � � �

  33. . .. .. . . .. . .. . . . .. . . .. . . .. .. x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang t n n s X LRT test rejects H if and only if . Therefore, size t n c Pr . .. . . . . . . . . . . .. . . .. . . .. . . .. .. . .. .. . . .. . . .. . . .. . 12 / 1 . .. . . Solution - Obtaining size α test Under H 0 X − θ 0 s X / √ n ∼ T n − 1 (� � X − θ 0 ) � ≥ c ∗∗∗ � � s X / √ n = α � � � Pr ( | T n − 1 | ≥ c ∗∗∗ ) = α

  34. . . . . .. .. . .. . . .. . . .. . . .. . . x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang t n n s X LRT test rejects H if and only if .. Therefore, size Pr . .. . . .. . . . . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. 12 / 1 . . . .. . Solution - Obtaining size α test Under H 0 X − θ 0 s X / √ n ∼ T n − 1 (� � X − θ 0 ) � ≥ c ∗∗∗ � � s X / √ n = α � � � Pr ( | T n − 1 | ≥ c ∗∗∗ ) = α c ∗∗∗ = t n − 1 ,α /2

  35. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . Pr Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 .. .. . . . . .. . .. . .. . . .. . . .. . 12 / 1 .. .. . . . . . .. . . .. . . .. . Solution - Obtaining size α test Under H 0 X − θ 0 s X / √ n ∼ T n − 1 (� � X − θ 0 ) � ≥ c ∗∗∗ � � s X / √ n = α � � � Pr ( | T n − 1 | ≥ c ∗∗∗ ) = α c ∗∗∗ = t n − 1 ,α /2 � � � x − θ 0 Therefore, size α LRT test rejects H 0 if and only if � ≥ t n − 1 ,α /2 s X / √ n � �

  36. . .. . .. . . .. . . . under H , regardless of the value of . .. . . .. .. . Solution - p-value from two-sided test , W X . W x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n where F T n F T n T n W x Pr T n W x Pr W X W x sup Pr W X p x . Then, a valid p-value can be defined by .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . 13 / 1 .. . . . .. . . . . .. . . . .. .. . . .. � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � ,

  37. . . . .. . . .. . .. .. . . .. . . .. . . . .. W x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n where F T n F T n Solution - p-value from two-sided test W x Pr T n W x Pr W X W x sup Pr W X p x . .. . .. . .. . . .. . . . . . .. . . .. . . . 13 / 1 .. . .. . . .. . . .. . . .. . .. . . . .. . � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by

  38. . .. .. . . .. . . . . . .. . .. .. . . . .. . where F T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n W x . F T n W x Pr T n W x Pr W X sup Solution - p-value from two-sided test .. . . .. .. .. . . .. . . . . . .. . . .. . . . 13 / 1 .. . .. . . .. . .. . . . .. . . . .. . . � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0

  39. . . . .. . . .. . .. .. . .. .. . . .. . . . where F T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n W x . F T n W x Pr T n sup Solution - p-value from two-sided test . .. . . .. .. . . . .. . . . . . .. . . .. . . .. 13 / 1 . .. . .. . . .. . . .. . . .. . . . .. . � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) =

  40. . .. .. . . .. . . . . .. .. . . .. . . .. .. where F T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n W x . F T n sup Solution - p-value from two-sided test . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 13 / 1 . .. .. . . .. . . .. . . .. . . .. . . � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) = = 2 Pr ( T n − 1 ≥ W ( x ))

  41. . .. . . .. . . .. . . .. . . .. . . . . where F T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang freedom. degrees of is the inverse CDF of t-distribution with n sup . Solution - p-value from two-sided test . .. . . .. .. .. . . . .. . . .. .. . .. .. . . .. . . . 13 / 1 . . . .. . . .. .. . . . . . .. . . .. � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) = = 2 Pr ( T n − 1 ≥ W ( x )) [ ] 1 − F − 1 T n − 1 { W ( x ) } = 2

  42. . . . .. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . Solution - p-value from two-sided test sup freedom. Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . .. . . . . .. . . . .. . . .. . . .. . 13 / 1 .. .. .. . . .. . . . . . .. . . .. . � � � X − θ 0 For a test statistic W ( X ) = s X / √ n � � � , under H 0 , regardless of the value of σ 2 , W ( X ) ∼ T n − 1 . Then, a valid p-value can be defined by Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) = = 2 Pr ( T n − 1 ≥ W ( x )) [ ] 1 − F − 1 T n − 1 { W ( x ) } = 2 where F − 1 T n − 1 ( · ) is the inverse CDF of t-distribution with n − 1 degrees of

  43. . . . .. . . .. . .. .. . . .. . . .. . . .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 Find a valid p-value, as a function of x . . . . . . . Problem . Example : One-sided normal p-value . .. . . .. .. .. . . .. . . . . . .. . . .. . . . . .. .. . .. . . .. . . 14 / 1 . . . .. . . .. . Let X = ( X 1 , · · · , X n ) be a random sample from a N ( θ, σ 2 ) population. Consider testing H 0 : θ ≤ θ 0 versus H 1 : θ > θ 0 . 1 Construct a size α LRT test.

  44. . . . . .. . . .. . .. . . . .. . . .. . .. Constructing LRT test .. sup Pr W X April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang does not matter. , and the value of always occurs at when W x p x W x want to show that the supreme in the definition of p-value , we first Because the null hypothesis contains multiple possible t n n s X x . .. . .. . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. . . .. . .. . . .. . . .. . 15 / 1 As shown in previous lectures, the LRT size α test rejects H 0 if

  45. . . . .. . . .. . .. .. . . .. . . .. . . . W x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang does not matter. , and the value of always occurs at when sup Pr W X . p x want to show that the supreme in the definition of p-value , we first Because the null hypothesis contains multiple possible Constructing LRT test . .. .. . .. .. . . . .. . . . . . .. . . .. . . . .. .. . . .. . . .. . . .. . .. . . . .. . 15 / 1 As shown in previous lectures, the LRT size α test rejects H 0 if x − θ 0 s X / √ n ≥ t n − 1 ,α W ( x ) =

  46. . .. .. . . .. . . . . . .. . . .. .. . .. .. W x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang does not matter. , and the value of always occurs at when sup Pr W X . p x want to show that the supreme in the definition of p-value Constructing LRT test . .. . . . . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . 15 / 1 . .. . .. . . As shown in previous lectures, the LRT size α test rejects H 0 if x − θ 0 s X / √ n ≥ t n − 1 ,α W ( x ) = Because the null hypothesis contains multiple possible θ ≤ θ 0 , we first

  47. . . .. . .. .. . . .. . . .. . . .. . .. . want to show that the supreme in the definition of p-value April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang does not matter. , and the value of always occurs at when Constructing LRT test . . .. . . .. . . . .. .. . . .. . . .. . . .. . . . . . .. . . . .. . . .. . . 15 / 1 .. . . .. . . .. As shown in previous lectures, the LRT size α test rejects H 0 if x − θ 0 s X / √ n ≥ t n − 1 ,α W ( x ) = Because the null hypothesis contains multiple possible θ ≤ θ 0 , we first Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = sup θ ∈ Ω 0

  48. . .. . .. .. . .. . . .. . . .. . . . .. . .. . . .. . . .. . Constructing LRT test want to show that the supreme in the definition of p-value Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . . .. . . .. . . .. . . .. . . .. . . . . . .. . . .. . . 15 / 1 .. . .. . . .. . As shown in previous lectures, the LRT size α test rejects H 0 if x − θ 0 s X / √ n ≥ t n − 1 ,α W ( x ) = Because the null hypothesis contains multiple possible θ ≤ θ 0 , we first Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = sup θ ∈ Ω 0 always occurs at when θ = θ 0 , and the value of σ does not matter.

  49. . .. . .. . . .. . . . Pr . .. . . .. . .. Obtaining one-sided p-value Pr . n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x Pr W X W x Pr T n s X X W x T n Pr n s X W x n s X .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . 16 / 1 . . . .. . . .. . . .. . .. . . .. . . .. Consider any θ ≤ θ 0 and any σ . ( X − θ 0 ) Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) s X / √ n ≥ W ( x ) | θ, σ 2 =

  50. . .. .. . . .. . . . . . .. . . .. . . . .. . Pr T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x Pr W X W x n . s X W x T n Pr Pr Pr Obtaining one-sided p-value .. .. . .. .. .. . . .. . . . . . .. . . .. . . . 16 / 1 .. . .. . . .. .. . . . .. . . . . .. . . Consider any θ ≤ θ 0 and any σ . ( X − θ 0 ) Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) s X / √ n ≥ W ( x ) | θ, σ 2 = ( X − θ s X / √ n ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 =

  51. . .. .. . . .. . . . . .. .. . . .. . . .. .. Pr T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x Pr W X W x Pr . Pr Pr Obtaining one-sided p-value . .. . . . . .. . . .. . . . . . . .. . . .. . . .. 16 / 1 . . . . .. .. . . . .. .. .. . . .. . . Consider any θ ≤ θ 0 and any σ . ( X − θ 0 ) Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) s X / √ n ≥ W ( x ) | θ, σ 2 = ( X − θ s X / √ n ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 = ( T n − 1 ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 =

  52. . .. . . .. . . .. .. . .. . . .. . . . . Pr April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x Pr W X Pr Pr . Obtaining one-sided p-value . .. . . .. .. . . . . .. . . .. .. . .. .. . . .. . . . 16 / 1 . . .. . . .. . . .. . . . .. . . .. . Consider any θ ≤ θ 0 and any σ . ( X − θ 0 ) Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) s X / √ n ≥ W ( x ) | θ, σ 2 = ( X − θ s X / √ n ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 = ( T n − 1 ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 = ≤ Pr ( T n − 1 ≥ W ( x ))

  53. . . .. . . .. . . .. . .. .. . . .. . .. . Pr April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang Pr Pr Pr Obtaining one-sided p-value . . .. . . .. . . . .. . . .. . . .. . . .. .. . . .. . . . 16 / 1 . .. . . . .. . . .. . . .. . . .. . Consider any θ ≤ θ 0 and any σ . ( X − θ 0 ) Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) s X / √ n ≥ W ( x ) | θ, σ 2 = ( X − θ s X / √ n ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 = ( T n − 1 ≥ W ( x ) + θ 0 − θ ) s X / √ n | θ, σ 2 = ≤ Pr ( T n − 1 ≥ W ( x )) W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) ( =

  54. . . . . .. . . .. . . .. . . .. . . .. .. . . Pr T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x F T n W x W x .. Pr W X W x sup Pr W X p x Thus, the p-value for this one-side test is Obtaining one-sided p-value (cont’d) . . .. .. .. .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . .. . . . .. . . .. . 17 / 1

  55. . .. .. . . .. . . . . . .. . . .. . . .. .. Pr T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x F T n W x W x . Pr W X sup Thus, the p-value for this one-side test is Obtaining one-sided p-value (cont’d) . .. . .. . . . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . 17 / 1 .. .. . . .. . . Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0

  56. . . . . .. . . .. . . .. . . .. . .. .. . . Pr T n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang W x F T n W x sup .. Thus, the p-value for this one-side test is Obtaining one-sided p-value (cont’d) . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . 17 / 1 .. . . . .. . . Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) =

  57. . . . .. .. . .. . . .. . . .. . . .. . .. .. . . .. . . .. . Obtaining one-sided p-value (cont’d) Thus, the p-value for this one-side test is sup Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . . .. . . .. . . .. . . .. . . .. . . . . . .. . . .. . . 17 / 1 .. . . .. . . .. Pr ( W ( X ) ≥ W ( x ) | θ, σ 2 ) p ( x ) = θ ∈ Ω 0 Pr ( W ( X ) ≥ W ( x ) | θ 0 , σ 2 ) = Pr ( T n − 1 ≥ W ( x )) = 1 − F − 1 = T n − 1 [ W ( x )]

  58. . . .. . . .. . . .. . p-Values by conditioning on on sufficient statistic .. . . .. . . .. . (not necessarily including alternative hypothesis). .. If we consider only the conditional distribution, by Theorem 8.3.27, this is April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang s S Pr p X a valid p-value, meaning that S x If the null hypothesis is W x S Pr W X p x that H is true. Define Again, let W X denote a test statistic where large value give evidence . s does not depend on true, the conditional distribution of X given S . . .. . . . .. . . .. . .. . . . .. . . .. . . .. 18 / 1 . .. . .. . . .. . . . . . .. . . .. . . .. Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } .

  59. . .. .. . . .. . . . . . .. . . .. . . . .. .. If we consider only the conditional distribution, by Theorem 8.3.27, this is April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang s S Pr p X a valid p-value, meaning that S x . W x S Pr W X p x that H is true. Define Again, let W X denote a test statistic where large value give evidence (not necessarily including alternative hypothesis). If the null hypothesis is p-Values by conditioning on on sufficient statistic .. . . .. .. . . .. . . . .. . .. . . .. . . . . .. .. . . .. . . .. . . . . . .. . . .. . 18 / 1 Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ .

  60. . . . . .. . . .. . . .. . . .. .. . .. . . a valid p-value, meaning that April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang s S Pr p X If we consider only the conditional distribution, by Theorem 8.3.27, this is .. (not necessarily including alternative hypothesis). If the null hypothesis is p-Values by conditioning on on sufficient statistic . .. . . .. . . . . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 18 / 1 .. . . .. . . Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ . Again, let W ( X ) denote a test statistic where large value give evidence that H 1 is true. Define p ( x ) = Pr ( W ( X ) ≥ W ( x ) | S = S ( x ))

  61. . . .. .. . .. . . .. . . .. . . .. . .. . . . .. . . .. . p-Values by conditioning on on sufficient statistic (not necessarily including alternative hypothesis). If the null hypothesis is If we consider only the conditional distribution, by Theorem 8.3.27, this is a valid p-value, meaning that Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . .. .. . . .. . . .. . . .. . . . . . .. . . . .. . . .. . 18 / 1 . .. . . .. . . .. Suppose S ( X ) is a sufficient statistic for the model { f ( x | θ ) : θ ∈ Ω 0 } . true, the conditional distribution of X given S = s does not depend on θ . Again, let W ( X ) denote a test statistic where large value give evidence that H 1 is true. Define p ( x ) = Pr ( W ( X ) ≥ W ( x ) | S = S ( x )) Pr ( p ( X ) ≤ α | S = s ) ≤ α

  62. . . . . .. . . .. . . .. . . .. . . .. .. . .. s April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang Thus, p X is a valid p-value. s Pr S s .. s Pr S S Pr p X s Pr p X p-Values by conditioning on sufficient statistic (cont’d) . . . .. .. .. . . .. . . . . . .. . . .. . . . . .. .. . .. . . .. . . . . . .. . . .. . 19 / 1 Then for any θ ∈ Ω 0 , unconditionally we have

  63. . .. . . .. . . .. . . .. . . .. . . . . s April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang Thus, p X is a valid p-value. s Pr S s . p-Values by conditioning on sufficient statistic (cont’d) . .. . . .. .. .. . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 19 / 1 .. . . .. . . Then for any θ ∈ Ω 0 , unconditionally we have ∑ Pr ( p ( X ) ≤ α | θ ) = Pr ( p ( X ) ≤ α | S = s ) Pr ( S = s | θ )

  64. . . .. .. . .. . . .. . . .. . . .. . .. . . . .. . . .. . p-Values by conditioning on sufficient statistic (cont’d) s s Thus, p X is a valid p-value. Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . .. .. . . .. . . .. . . .. . . . . . .. . . . .. . . .. . 19 / 1 . .. . . .. . . .. Then for any θ ∈ Ω 0 , unconditionally we have ∑ Pr ( p ( X ) ≤ α | θ ) = Pr ( p ( X ) ≤ α | S = s ) Pr ( S = s | θ ) ∑ ≤ α Pr ( S = s | θ ) = α

  65. . . . .. .. . .. . . .. . . .. . . .. . .. .. . . .. . . .. . p-Values by conditioning on sufficient statistic (cont’d) s s Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . . .. . . .. . . .. . . .. . . .. . . . . . .. . . .. . . 19 / 1 .. . . .. . . .. Then for any θ ∈ Ω 0 , unconditionally we have ∑ Pr ( p ( X ) ≤ α | θ ) = Pr ( p ( X ) ≤ α | S = s ) Pr ( S = s | θ ) ∑ ≤ α Pr ( S = s | θ ) = α Thus, p ( X ) is a valid p-value.

  66. p n p n p n . . X pmf of X p . Then the join Under H , if we let p denote the common value of p . . . . . . f x . Solution . . . Problem . Example - Fisher’s Exact Test . .. . is n x p p x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x x n x x .. n x n x p x x n x p x x .. . . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . . . . . .. . . .. . . .. . . . .. . .. . . .. . . .. . . .. 20 / 1 Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function.

  67. p n p n p n Problem x p f x . . Solution . . . . x Example - Fisher’s Exact Test . .. . . .. . . .. n . p x x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x x n p x . x n x n x p x x n x .. . .. . . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . . .. . . .. . . .. . . .. . .. .. . . .. . . 20 / 1 Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is

  68. p n . Problem . Example - Fisher’s Exact Test . .. . . .. . . . .. . .. .. . . .. . . . x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang X is a sufficient statistic under H . X Therefore S x n Solution x p x x n x n . . . . .. . .. . . . .. . . .. . . .. . . .. . . .. . . . 20 / 1 . . . .. . . . . .. . .. .. . . .. . .. . . .. Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 f ( x 1 , x 2 | p ) = x 1 x 2

  69. . .. .. . . .. . . . . . .. . . .. . . . .. . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang X is a sufficient statistic under H . X Therefore S . . Solution . . . Problem . Example - Fisher’s Exact Test .. .. . .. .. . . .. . .. . . . .. . . .. . . . . .. .. . . .. . . .. . . . 20 / 1 . .. . . . .. . Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 f ( x 1 , x 2 | p ) = x 1 x 2 ( n 1 )( n 2 ) p x 1 + x 2 (1 − p ) n 1 + n 2 − x 1 − x 2 = x 1 x 2

  70. . .. .. . . .. .. . . . . .. . . .. . . .. .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang . . Solution . . . Problem . Example - Fisher’s Exact Test . .. . . . . . . . .. . . .. . . . .. . . .. . . .. 20 / 1 . . . .. . . .. .. . .. . .. . . .. . . Let X 1 and X 2 be independent observations with X 1 ∼ Binomial ( n 1 , p 1 ) , and X 2 ∼ Binomial ( n 2 , p 2 ) . Consider testing H 0 : p 1 = p 2 versus H 1 : p 1 > p 2 . Find a valid p-value function. Under H 0 , if we let p denote the common value of p 1 = p 2 . Then the join pmf of ( X 1 , X 2 ) is ( n 1 ) ( n 2 ) p x 1 (1 − p ) n 1 − x 1 p x 2 (1 − p ) n 2 − x 2 f ( x 1 , x 2 | p ) = x 1 x 2 ( n 1 )( n 2 ) p x 1 + x 2 (1 − p ) n 1 + n 2 − x 1 − x 2 = x 1 x 2 Therefore S = X 1 + X 2 is a sufficient statistic under H 0 .

  71. . . f X s is a hypergeometric distribution. X given S The conditional distribution of Solution - Fisher’s Exact Test (cont’d) . .. . .. n . . .. . . .. . . x s x .. x April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang f j s x j s min n p x n x is x Thus, the p-value conditional on the sufficient statistic s s n n x s .. . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . .. .. . . .. . . 21 / 1 Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 .

  72. . .. .. . . .. . . . . . .. . .. .. . . . .. . s April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang f j s x j min n . x p x x is x Thus, the p-value conditional on the sufficient statistic s s Solution - Fisher’s Exact Test (cont’d) .. . . .. .. .. . . .. . . . . . .. . . .. . . . 21 / 1 .. . . . .. . . .. . . .. . . .. . . .. . Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 . The conditional distribution of X 1 given S = s is a hypergeometric distribution. ( n 1 )( n 2 ) s − x 1 f ( X 1 = x 1 | s ) = x 1 ( n 1 + n 2 )

  73. . .. . .. . . .. . .. .. . . .. . . . .. . .. . . .. . . .. . Solution - Fisher’s Exact Test (cont’d) s Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 . . . .. . . .. . . . . . .. . . .. . . .. . . .. . . .. . . 21 / 1 .. . .. . . . .. Given the value of S = s , it is reasonable to use X 1 as a test statistic and reject H 0 in favor of H 1 for large values of X 1 ,because large values of X 1 correspond to small values of X 2 = s − X 1 . The conditional distribution of X 1 given S = s is a hypergeometric distribution. ( n 1 )( n 2 ) s − x 1 f ( X 1 = x 1 | s ) = x 1 ( n 1 + n 2 ) Thus, the p-value conditional on the sufficient statistic s = x 1 + x 2 is min ( n 1 , s ) ∑ p ( x 1 , x 2 ) = f ( j | s ) j = x 1

  74. . . . . Problem . Exercise 8.1 . .. . .. to assume that the coin is fair? Justify your answer. . . .. . . .. . . In 1,000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable . . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 H . . 1 H . be the probability of head. Hypothesis Let . . . . . . . . .. . .. . .. . . .. . . .. . .. . . . .. . . .. . . . .. .. .. . . .. . . .. . . . . . .. . . .. . . .. . 22 / 1

  75. . . .. . . .. . . .. . Exercise 8.1 .. . . .. . . .. . . . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 H . . 1 H . Problem . Hypothesis . to assume that the coin is fair? Justify your answer. In 1,000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable . . . .. .. .. . .. . . .. . . . .. . .. . . .. . . . . . .. . .. . . .. . . . . . .. . . .. . . .. 22 / 1 Let θ ∈ (0 , 1) be the probability of head.

  76. . . . . .. . . .. . .. . . . .. . . .. . .. Exercise 8.1 .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang . . . . . . Hypothesis . to assume that the coin is fair? Justify your answer. In 1,000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable . . Problem .. . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . .. 22 / 1 . . .. . . .. . . .. Let θ ∈ (0 , 1) be the probability of head. 1 H 0 : θ = 1/2 2 H 1 : θ ̸ = 1/2

  77. . . . . . . Two possible strategies . .. . .. . . . .. . . .. . . . 2 Test whether the observation rejects H or not. .. . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 Compute p-value as a quantitative support for the null hypothesis. . . 1 Obtain a p-value function p X . . . . . . . . . . Obtaining p-value . 3 Conclude that H is true or false at level .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. 23 / 1 Performing size α Hypothesis Testing 1 Define a level α test for a reasonably small α .

  78. . . . . . . Two possible strategies . .. . .. . . . .. . . .. . . . . . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 Compute p-value as a quantitative support for the null hypothesis. . . 1 Obtain a p-value function p X . . . . . . . . . . Obtaining p-value . 3 Conclude that H is true or false at level .. .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . .. . . . .. . . .. . . .. . .. . . .. . . .. . 23 / 1 Performing size α Hypothesis Testing 1 Define a level α test for a reasonably small α . 2 Test whether the observation rejects H 0 or not.

  79. . . .. . . .. . . .. . Two possible strategies .. . . .. . . .. . . . . April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang 2 Compute p-value as a quantitative support for the null hypothesis. . . . . . Obtaining p-value . . . . . . . . .. .. .. . .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . .. . . .. . 23 / 1 Performing size α Hypothesis Testing 1 Define a level α test for a reasonably small α . 2 Test whether the observation rejects H 0 or not. 3 Conclude that H 0 is true or false at level α 1 Obtain a p-value function p ( X ) .

  80. . . . .. . . .. . .. .. . . .. . . .. .. . . .. At level April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang z z Z x , the H is rejected if and only if n 1,000 tosses are large enough to approximate using CLT. X X X Z X A two-sided Wald test statistic can be defined by n X . . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . .. . . .. . .. . . .. . 24 / 1 Asymptotic size α test ( θ, θ (1 − θ ) ) ∼ AN

  81. . . . .. . . .. . .. .. . . .. .. . .. . . . , the H is rejected if and only if April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang z z Z x At level . n A two-sided Wald test statistic can be defined by n X 1,000 tosses are large enough to approximate using CLT. . .. . . .. .. .. . . .. . . . . . .. . . .. . . . . .. . . .. . . .. . . .. . . 24 / 1 . .. . .. . Asymptotic size α test ( θ, θ (1 − θ ) ) ∼ AN X − θ 0 Z ( X ) = √ X (1 − X )

  82. . .. . . .. . .. .. . . .. . . .. . . . . n April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang z n A two-sided Wald test statistic can be defined by X . 1,000 tosses are large enough to approximate using CLT. . .. . . .. .. . . . . .. . . .. .. . .. .. . . .. . . . 24 / 1 . . . . .. . . . .. . . .. . . .. .. . Asymptotic size α test ( θ, θ (1 − θ ) ) ∼ AN X − θ 0 Z ( X ) = √ X (1 − X ) At level α , the H 0 is rejected if and only if | Z ( x ) | > z α /2

  83. . . .. . . .. . . .. . .. .. . . .. . .. . X April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang n A two-sided Wald test statistic can be defined by n 1,000 tosses are large enough to approximate using CLT. . . .. . . .. . . . .. . . .. . . .. . . .. .. . . .. . . . 24 / 1 . .. . .. .. . . . . . . .. . . .. . Asymptotic size α test ( θ, θ (1 − θ ) ) ∼ AN X − θ 0 Z ( X ) = √ X (1 − X ) At level α , the H 0 is rejected if and only if | Z ( x ) | > z α /2 0 . 56 − 0 . 5 = 3 . 822 > z α /2 √ 0 . 56 × 0 . 44 1000

  84. . . . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . Hypothesis Testing Hyun Min Kang Biostatistics 602 - Lecture 22 April 9th, 2013 .. .. . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . 25 / 1 Since z α /2 is 1.96, 2.57, and 4.42 for α = 0 . 05 , 0 . 01 , and 10 − 5 , respectively, we can conclude that the coin is biased at level 0 . 05 and 0 . 01 . However, at the level of 10 − 5 , the coin can be assumed to be fair.

  85. . .. .. . . .. . . . . . .. . . .. . . .. .. Pr Z X April 9th, 2013 Biostatistics 602 - Lecture 22 Hyun Min Kang suggesting a strong evidence for rejecting H . , So, under the null hypothesis, the size of test is less than Z x . Pr Z X If the normal approximation is used, the p-value can be obtained as Using p-value function . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . . .. . .. . . .. . . 26 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend