lecture 18
play

Lecture 18 Models for areal data Colin Rundel 03/22/2017 1 areal - PowerPoint PPT Presentation

Lecture 18 Models for areal data Colin Rundel 03/22/2017 1 areal / lattice data 2 Example - NC SIDS 3 SID79 E I 2 E I 2 Some properties of Morans I (when there is no spatial autocorrelation): E I 1 n 1 Var I EDA - Morans


  1. Lecture 18 Models for areal data Colin Rundel 03/22/2017 1

  2. areal / lattice data 2

  3. Example - NC SIDS 3 SID79

  4. E I 2 E I 2 Some properties of Moran’s I (when there is no spatial autocorrelation): • E I 1 n 1 • Var I EDA - Moran’s I y Something ugly but closed form • Asymptotically, I E I Var I 0 1 where w is a spatial weights matrix. 4 n y y If we have observations at n spatial locations ( s 1 , . . . s n ) ( )( ) ∑ n ∑ n y ( s i ) − ¯ y ( s j ) − ¯ i = 1 j = 1 w ij I = ∑ n ∑ n ∑ n ( y ( s i ) − ¯ ) i = 1 j = 1 w ij i = 1

  5. EDA - Moran’s I y • Asymptotically, Some properties of Moran’s I (when there is no spatial autocorrelation): where w is a spatial weights matrix. y y 4 n If we have observations at n spatial locations ( s 1 , . . . s n ) ( )( ) ∑ n ∑ n y ( s i ) − ¯ y ( s j ) − ¯ i = 1 j = 1 w ij I = ∑ n ∑ n ∑ n ( y ( s i ) − ¯ ) i = 1 j = 1 w ij i = 1 • E ( I ) = − 1 / ( n − 1 ) • Var ( I ) = E ( I 2 ) − E ( I ) 2 = Something ugly but closed form I − E ( I ) √ Var ( I ) ∼ N ( 0 , 1 )

  6. NC SIDS & Moran’s I Moran.I (nc$SID74, weight = 1* st_touches (nc, sparse=FALSE)) %>% str () $ p.value : num 0.0118 ## : num 0.0627 $ sd ## $ expected: num -0.0101 ## $ observed: num 0.148 ## ## List of 4 library (ape) Lets start by using an adjacency matrix for w (shared county borders). ## [1] 0.119089 morans_I (y = nc$SID74, w = 1* st_touches (nc, sparse=FALSE)) } (n/ sum (w)) * (num/denom) { 5 morans_I = function (y, w) n = length (y) y_bar = mean (y) num = sum (w * (y-y_bar) %*% t (y-y_bar)) denom = sum ( (y-y_bar)^2 )

  7. EDA - Geary’s C y • Geary’s C is inversely related to Moran’s I 1 then positive spatial autocorrelation • If C 1 then negative spatial autocorrelation • If C 1 then no spatial autocorrelation • If C 2 C • 0 Some properties of Geary’s C: where w is a spatial weights matrix. 6 Like Moran’s I, if we have observations at n spatial locations ( s 1 , . . . s n ) ∑ n ∑ n ( y ( s i ) − y ( s j ) ) 2 n − 1 i = 1 j = 1 w ij C = 2 ∑ n ∑ n ∑ n ( y ( s i ) − ¯ ) i = 1 j = 1 w ij i = 1

  8. EDA - Geary’s C y • Geary’s C is inversely related to Moran’s I Some properties of Geary’s C: where w is a spatial weights matrix. 6 Like Moran’s I, if we have observations at n spatial locations ( s 1 , . . . s n ) ∑ n ∑ n ( y ( s i ) − y ( s j ) ) 2 n − 1 i = 1 j = 1 w ij C = 2 ∑ n ∑ n ∑ n ( y ( s i ) − ¯ ) i = 1 j = 1 w ij i = 1 • 0 < C < 2 • If C ≈ 1 then no spatial autocorrelation • If C > 1 then negative spatial autocorrelation • If C < 1 then positive spatial autocorrelation

  9. NC SIDS & Geary’s C Again using an adjacency matrix for w (shared county borders). gearys_C = function (y, w) { ((n-1)/(2* sum (w))) * (num/denom) } gearys_C (y = nc$SID74, w = 1* st_touches (nc, sparse=FALSE)) ## [1] 0.8898868 7 n = length (y) y_bar = mean (y) y_i = y %*% t ( rep (1,n)) y_j = t (y_i) num = sum (w * (y_i-y_j)^2) denom = sum ( (y-y_bar)^2 )

  10. Spatial Correlogram d = nc %>% st_centroid () %>% st_distance () %>% strip_class () ) gearys = map_dbl (adj_mats, gearys_C, y = nc$SID74) morans = map_dbl (adj_mats, morans_I, y = nc$SID74), = breaks[-1], dist ) } ‘diag<-‘(0) matrix (ncol=100) %>% { function (l) levels (d_cut), 8 breaks = seq (0, max (d), length.out = 21) d_cut = cut (d, breaks) adj_mats = map ( (d_cut == l) %>% d = data_frame (

  11. 9 morans gearys 0.6 0.4 1.0 var value morans 0.2 gearys 0.5 0.0 0.0 2e+05 4e+05 6e+05 2e+05 4e+05 6e+05 dist

  12. 10 1.0 gearys 0.5 0.0 0.0 0.2 0.4 0.6 morans

  13. Autoregressive Models 11

  14. 12 AR Models - Time Lets just focus on the simplest case, an AR ( 1 ) process y t = δ + ϕ y t − 1 + w t where w t ∼ N ( 0 , σ 2 ) and | ϕ | < 1, then δ E ( y t ) = 1 − ϕ σ 2 Var ( y t ) = 1 − ϕ

  15. f y 1 f y 2 y 1 f y 3 y 2 y 1 f y n y n 1 y n f y 1 f y 2 y 1 f y 3 y 2 f y n y n 1 . . . . AR Models - Time - Joint Distribution 1 1 . . . . . . ... . 1 . 1 In writing down the likelihood we also saw that an AR 1 is 1st order Markovian, f y 1 y n 2 y 1 1 1 13 y 1 y n multivariate normal distribution . . . y 2 Previously we saw that an AR ( 1 ) model can be represented using a       ϕ n − 1   ϕ · · · ϕ n − 2 · · · ϕ         δ σ 2         ∼ N ,         1 − ϕ 1 − ϕ                 ϕ n − 1 ϕ n − 2 · · ·

  16. AR Models - Time - Joint Distribution . . . . 1 1 1 . . . 1 . . ... . . . 1 Markovian, 1 13 . y 2 multivariate normal distribution y n . . y 1 Previously we saw that an AR ( 1 ) model can be represented using a       ϕ n − 1   ϕ · · · ϕ n − 2 · · · ϕ         δ σ 2         ∼ N ,         1 − ϕ 1 − ϕ                 ϕ n − 1 ϕ n − 2 · · · In writing down the likelihood we also saw that an AR ( 1 ) is 1st order f ( y 1 , . . . , y n ) = f ( y 1 ) f ( y 2 | y 1 ) f ( y 3 | y 2 , y 1 ) · · · f ( y n | y n − 1 , y n − 2 , . . . , y 1 ) = f ( y 1 ) f ( y 2 | y 1 ) f ( y 3 | y 2 ) · · · f ( y n | y n − 1 )

  17. Competing Definitions for y t vs. In the case of time, both of these definitions result in the same multivariate distribution for y . 14 y t = δ + ϕ y t − 1 + w t y t | y t − 1 ∼ N ( δ + ϕ y t − 1 , σ 2 )

  18. Competing Definitions for y t vs. In the case of time, both of these definitions result in the same multivariate distribution for y . 14 y t = δ + ϕ y t − 1 + w t y t | y t − 1 ∼ N ( δ + ϕ y t − 1 , σ 2 )

  19. f y s 10 y s 9 f y s 1 y s 2 neighborhoods. We will define N s i to be the set of neighbors of location s i . s 2 s 4 s 1 s 2 s 3 s 4 • If we use distance within 2 units then N s 3 N s 3 • If we define the neighborhood based on “touching” then y s 8 Instead we need to think about things in terms of their neighbors / y s 10 y s 3 • etc. y s 10 f y s 9 f y s 10 y s 1 AR in Space 15 y s 1 f y s 2 f y s 1 y s 10 f y s 1 Even in the simplest spatial case there is no clear / unique ordering, s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

  20. neighborhoods. We will define N s i to be the set of neighbors of location s i . s 2 s 4 s 1 s 2 s 3 s 4 AR in Space Even in the simplest spatial case there is no clear / unique ordering, • etc. • If we use distance within 2 units then N s 3 N s 3 • If we define the neighborhood based on “touching” then Instead we need to think about things in terms of their neighbors / 15 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 f ( y ( s 1 ) , . . . , y ( s 10 ) ) = f ( y ( s 1 ) ) f ( y ( s 2 ) | y ( s 1 ) ) · · · f ( y ( s 10 | y ( s 9 ) , y ( s 8 ) , . . . , y ( s 1 ) ) = f ( y ( s 10 ) ) f ( y ( s 9 ) | y ( s 10 ) ) · · · f ( y ( s 1 | y ( s 2 ) , y ( s 3 ) , . . . , y ( s 10 ) ) = ?

  21. AR in Space Even in the simplest spatial case there is no clear / unique ordering, • etc. • If we define the neighborhood based on “touching” then Instead we need to think about things in terms of their neighbors / 15 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 f ( y ( s 1 ) , . . . , y ( s 10 ) ) = f ( y ( s 1 ) ) f ( y ( s 2 ) | y ( s 1 ) ) · · · f ( y ( s 10 | y ( s 9 ) , y ( s 8 ) , . . . , y ( s 1 ) ) = f ( y ( s 10 ) ) f ( y ( s 9 ) | y ( s 10 ) ) · · · f ( y ( s 1 | y ( s 2 ) , y ( s 3 ) , . . . , y ( s 10 ) ) = ? neighborhoods. We will define N ( s i ) to be the set of neighbors of location s i . N ( s 3 ) = { s 2 , s 4 } • If we use distance within 2 units then N ( s 3 ) = { s 1 , s 2 , s 3 , s 4 }

  22. Defining the Spatial AR model 1 1 Here we will consider a simple average of neighboring observations, just like • Conditional Autoregressive (CAR) 16 autoregressive process, with the temporal AR model we have two options in terms of defining the • Simultaneous Autogressve (SAR) ∑ y ( s ′ ) + N ( 0 , σ 2 ) y ( s ) = δ + ϕ | N ( s ) | s ′ ∈ N ( s )   y ( s ′ ) , σ 2 ∑ y ( s ) | y − s ∼ N  δ + ϕ  | N ( s ) | s ′ ∈ N ( s )

  23. 2 I Simultaneous Autogressve (SAR) ij 0 where W y y then we can write y as follows, otherwise 0 N s i if j N s i 1 W Using First we need to define a weight matrix W where . 1 17 y ( s ′ ) + N ( 0 , σ 2 ) ∑ y ( s ) = δ + ϕ | N ( s ) | s ′ ∈ N ( s ) ( ) t we want to find the distribution of y = y ( s 1 ) , y ( s 2 ) , . . . , y ( s n )

  24. 2 I Simultaneous Autogressve (SAR) . 0 where W y y then we can write y as follows, otherwise 0 Using First we need to define a weight matrix W where 17 1 y ( s ′ ) + N ( 0 , σ 2 ) ∑ y ( s ) = δ + ϕ | N ( s ) | s ′ ∈ N ( s ) ( ) t we want to find the distribution of y = y ( s 1 ) , y ( s 2 ) , . . . , y ( s n ) { 1 / | N ( s i ) | if j ∈ N ( s i ) { W } ij =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend