computational methods for neutrino transport in core
play

Computational Methods for Neutrino Transport in Core-Collapse - PowerPoint PPT Presentation

Computational Methods for Neutrino Transport in Core-Collapse Supernovae Eirik Endeve endevee@ornl.gov March 22, 2017 Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 1 / 30 Outline Background 1 Neutrino


  1. Computational Methods for Neutrino Transport in Core-Collapse Supernovae Eirik Endeve endevee@ornl.gov March 22, 2017 Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 1 / 30

  2. Outline Background 1 Neutrino Transport Equations 2 Solving the Equations on a Computer 3 Some Examples 4 Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 2 / 30

  3. Core-Collapse Supernovae (CCSNe) Explosion of Massive Star ( M � 8 M ⊙ ). Dominant Source of Heavy Elements. Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 3 / 30

  4. Computational Challenge Computational models needed to interpret observations Neutrino transport most compute-intensive component of models ◮ Exascale computing challenge Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 4 / 30

  5. Core-Collapse Supernovae (CCSNe) Neutrinos Play Fundamental Role Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 5 / 30

  6. Core-Collapse Supernovae (CCSNe) Neutrinos Play Fundamental Role Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 6 / 30

  7. Neutrino Mean-Free Path Gain&Radius& Shock&Radius& Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 7 / 30

  8. Neutrino Transport: Boltzmann Equation Stellar fluid semi-transparent to neutrinos in heating region Classical description based on non-negative distribution function dN = f ( p , x , t ) d p d x Kinetic equation: balance between advection and collisions L ( f ) = C ( f ) ◮ Advection: Ballistic transport, relativistic effects ◮ Collisions: Emission/absorption, scattering, pair processes Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 8 / 30

  9. Boltzmann Equation: Left-Hand Side Phase-Space Advection Relativistic Liouville operator L ( f ) = p µ ∂ f ∂ f ∂ x µ − p ν p ρ Γ i νρ ∂ p i Neutrino four-momentum � � T p µ = ε 1 , cos ϑ, sin ϑ cos ϕ, sin ϑ sin ϕ Chirstoffel symbols 2 g µσ � ∂ g σν � νρ = 1 ∂ x ρ + ∂ g σρ ∂ x ν − ∂ g νρ Γ µ ∂ x σ Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 9 / 30

  10. Boltzmann Equation: Right-Hand Side Neutrino-Matter Interactions Electron capture e − + p ⇋ n + ν e e − + ( A , Z ) ⇋ ( A , Z − 1) + ν e e + + n ⇋ p + ¯ ν e Scattering ν + α, A ⇋ α, A + ν ν + e − , e + , n , p ⇋ ν ′ + ( e − ) ′ , ( e + ) ′ , n ′ , p ′ Pair processes e − + e + ⇋ ν + ¯ ν N + N ⇋ N ′ + N ′ + ν + ¯ ν Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 10 / 30

  11. Boltzmann Equation: Right-Hand Side Integral Operators Example: Neutrino-electron scattering � � � � � C ( p ) = 1 − f ( p ) R 3 R ( p ← q ) f ( q ) d q f � � � − f ( p ) R 3 R ( p → q ) 1 − f ( q ) d q Computationally expensive to evaluate N p � � � C ( p i ) = M ik ( f ) f ( p k ) f k =1 O ( N 2 p ) operations Must be evaluated for every x and t Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 11 / 30

  12. Solving the Equations Challenges: High dimensionality f ( p , x , t ) ∈ R 3 × R 3 × R + ◮ High-order accurate methods Multiple time scales τ col ≪ τ adv ◮ Efficient time-integration methods Robustness ◮ Distribution function bounded: f ∈ [0 , 1] for Fermions Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 12 / 30

  13. Model Equation Consider Boltzmann equation in “slab symmetry” with simple collision term ∂ t f + µ ∂ x f = η − χ f f = f ( x , t ; ε, µ ). Consider fixed ε ∈ R + and µ = cos ϑ ∈ [ − 1 , 1] η ( x ; ε ) > 0 Emissivity χ ( x ; ε ) > 0 Absorption opacity Collision term drives f towards equilibrium value f Eq f Eq = η/χ (= Fermi Dirac) Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 13 / 30

  14. Spatial Discretization Divide space into N intervals I i = { x : x ∈ [ x i − 1 / 2 , x i +1 / 2 ] } ∀ i = 1 , . . . , N x i-1 x i x i+1 Δx x i-1/2 x i+1/2 In each interval I i , define the average � 1 ¯ f i ( t ) = f ( x , t ) dx ∆ x I i Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 14 / 30

  15. Spatial Discretization Integrate Boltzmann equation over interval I i � � � f i = − 1 η i − 1 ∂ t ¯ µ f | i +1 / 2 − µ f | i − 1 / 2 + ¯ χ f dx (Exact Equation) ∆ x ∆ x I i Need to approximate � � ¯ � � ¯ µ f | i +1 / 2 = 1 f i + 1 µ f | i +1 / 2 ≈ � µ + | µ | µ − | µ | f i +1 2 2 � 1 χ f dx ≈ χ i ¯ η i ≈ η i ¯ and f i ∆ x I i So that � � � f i = − 1 µ f | i +1 / 2 − � ∂ t ¯ + η i − χ i ¯ µ f | i − 1 / 2 f i ∆ x = A (¯ f i − 1 , ¯ f i , ¯ f i +1 ) + C (¯ f i ) = F (¯ f i − 1 , ¯ f i , ¯ f i +1 ) Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 15 / 30

  16. Spatial Discretization Upwind Method ∂ t f + µ ∂ x f = 0 has solution f ( x , t ) = f 0 ( x − µ t ) μ > 0 μ Δt x i-1/2 x i+1/2 � � ¯ � � ¯ µ f | i +1 / 2 = 1 f i + 1 � µ + | µ | µ − | µ | f i +1 2 2 Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 16 / 30

  17. Time Integration Divide time domain t 0 < t 1 , t 2 , . . . , t n , t n +1 , . . . , T Define solution vector ¯ f N ( t )) T and write d t ¯ f = F (¯ f ( t ) = (¯ f 1 ( t ) , . . . , ¯ f ) Implicit Explicit � t n +1 � t n +1 n +1 = ¯ n + n +1 = ¯ n + ¯ F (¯ ¯ F (¯ f ( τ )) d τ f f f ( τ )) d τ f f t n t n n + ∆ t F (¯ n + ∆ t F (¯ n ) n +1 ) ≈ ¯ ≈ ¯ f f (easy) (hard) f f Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 17 / 30

  18. Time Integration Restrictions on the Time Step ∆ t Assume f Eq , i , ¯ f n i ∈ [0 , 1] Explicit method for collision term: ¯ = (∆ t χ i ) f Eq , i + (1 − ∆ t χ i ) ¯ f n +1 f n i i Need ∆ t ≤ 1 /χ i for ¯ f n +1 ∈ [0 , 1] (not practical) i Implicit method for collision term: � � � � ∆ t χ i 1 f n +1 ¯ ¯ f n = f Eq , i + i i 1 + ∆ t χ i 1 + ∆ t χ i ¯ f n +1 ∈ [0 , 1] for any ∆ t ≥ 0 i Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 18 / 30

  19. Time Integration Use combination of Explicit and Implicit methods d t ¯ f i = A (¯ f i − 1 , ¯ f i , ¯ + C (¯ f i +1 ) f i ) � �� � ���� Explicit Implicit + = f ⋆ ¯ i = ¯ i + ∆ t A (¯ i − 1 , ¯ i , ¯ f n +1 ¯ = ¯ f ⋆ i + ∆ t C (¯ f n +1 f n f n f n f n I : i +1 ) II : ) i i Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 19 / 30

  20. Bound-Preserving Spatial Discretization Need to preserve f ∈ [0 , 1] in advection step Set of admissible states R = { f | f ≥ 0 and f ≤ 1 } ( convex set ) Explicit advection step ( λ = ∆ t / ∆ x ) � � ¯ i = ¯ µ f | i +1 / 2 − � � f ⋆ f n i − λ µ f | i − 1 / 2 � � ¯ � � ¯ � � ¯ = 1 i + 1 f n f n f n 2 λ | µ | + µ i − 1 + 1 − λ | µ | 2 λ | µ | − µ i +1 1 1 � � α k ¯ f n = where α k = 1 i + k k = − 1 k = − 1 For α k ≥ 0, ¯ is a convex combination of { ¯ i − 1 , ¯ i , ¯ f ⋆ f n f n f n i +1 } i ∆ t ≤ ∆ x Need: (acceptable) | µ | Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 20 / 30

  21. Numerical Examples Journal of Computational Physics 287 (2015) 151–183 Contents lists available at ScienceDirect Journal of Computational Physics www.elsevier.com/locate/jcp Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates ✩ Eirik Endeve a , c , ∗ , Cory D. Hauck a , b , Yulong Xing a , b , Anthony Mezzacappa c High-order method � ˆ Local expansion: f ( p , x , t ) = f k ( t ) φ k ( p , x ) k Same principles (but somewhat more intricate) Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 21 / 30

  22. Advection Test with Smooth Analytical Solution High-order methods can offer substantial savings in computational cost 0 10 L 1 Error Norm − 5 10 DG(1) DG(2) − 10 10 DG(3) 2 4 6 8 10 10 10 10 Degrees of Freedom Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 22 / 30

  23. Numerical Examples in Spherical Symmetry ds 2 = − α 2 dt 2 + ψ 4 ( dr 2 + r 2 d θ 2 + r 2 sin 2 θ d φ 2 ); f = f ( r , µ, ε, t ) Boltzmann equation with relativistic gravity � � � � 1 ∂ f 1 ∂ − 1 ∂ 1 ∂α α ψ 4 r 2 µ f ε 3 ∂ t + ∂ r µ f α ψ 6 r 2 ψ 2 α ε 2 α ∂ r ∂ε � �� � � �� � Spatial advection Energy advection � � ψ − 2 � 1 � � 1 − µ 2 � ∂ψ 2 + ∂ r + 1 ∂ r − 1 ∂α f = 0 ∂µ ψ 2 α ∂ r � �� � Angular advection Schwarzschild metric α = 1 − M ψ = 1+ M 2 r and 1 + M 2 r 2 r Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 23 / 30

  24. Radiating Sphere Test Neutrinos propagating out of gravitational well Astro-Particle Seminar, March 2017 Computational Methods for Neutrino Transport 24 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend