lecture 10
play

Lecture 10 Forecasting and Model Fitting Colin Rundel 02/20/2017 - PowerPoint PPT Presentation

Lecture 10 Forecasting and Model Fitting Colin Rundel 02/20/2017 1 Forecasting 2 Forecasting ARMA Forecasts for stationary models necessarily revert to mean Differenced models revert to trend (usually a line) Why? AR gradually


  1. Lecture 10 Forecasting and Model Fitting Colin Rundel 02/20/2017 1

  2. Forecasting 2

  3. Forecasting ARMA • Forecasts for stationary models necessarily revert to mean • Differenced models revert to trend (usually a line) • Why? AR gradually damp out, MA terms disappear • Like any other model, accuracy decreases as we extrapolate / prediction interval increases 3 • Remember, E ( y t ) ̸ = δ but rather δ/ ( 1 − ∑ p i = 1 ϕ i ) .

  4. 4 One step ahead forecasting Take a fitted ARMA(1,1) process where we know both δ , ϕ , and θ then ˆ y n = δ + ϕ y n − 1 + θ w n − 1 + w n ˆ y n + 1 = δ + ϕ y n + θ w n + w n + 1 ≈ δ + ϕ y n + θ ( y n − ˆ y n ) + 0 ˆ y n + 2 = δ + ϕ y n + 1 + θ w n + 1 + w n + 2 ≈ δ + ϕ ˆ y n + 1 + θ 0 + 0

  5. ARIMA(3,1,1) Example 5

  6. Model Fitting 6

  7. Fitting ARIMA - MLE • Requires that the data be stationary after differencing • Handling d is straight forward, just difference the original data d times t . • To keep things simple we’ll assume w t iid 7 For an ARIMA ( p , d , q ) model (leaving n − d observations) y ′ t = ∆ d y t • After differencing fit an ARMA ( p , q ) model to y ′ ∼ N ( 0 , σ 2 w )

  8. Stationarity & normal errors normal. The joint density of y is given by 1 1 8 If both of these conditions are met, then the time series y t will also be In general, the vector y = ( y 1 , y 2 , . . . , y t ) ′ will have a multivariate normal distribution with mean µ and covariance Σ where Σ ij = Cov ( y t , y t + i − j ) = γ i − j . ( ) 2 ( y − µ ) ′ Σ − 1 ( y − µ ) f y ( y ) = ( 2 π ) t / 2 det ( Σ ) 1 / 2 × exp −

  9. AR 9

  10. 10 w use to find the MLE. but not that easy to write down a closed form density which we can then Using these properties it is possible to write down the MVN distribution of y w w , we know Fitting AR ( 1 ) y t = δ + ϕ y t − 1 + w t Need to estimate three parameters: δ , ϕ , and σ 2 δ E ( y t ) = 1 − ϕ σ 2 Var ( y t ) = 1 − ϕ 2 σ 2 1 − ϕ 2 ϕ | h | Cov ( y t , y t + h ) =

  11. Conditional Density w w 2 1 exp w 1 We can rewrite the density as follows, 11 w where, f y = f y t , y t − 1 , ..., y 2 , y 1 = f y t | y t − 1 , ..., y 2 , y 1 f y t − 1 | y t − 2 , ..., y 2 , y 1 · · · f y 2 | y 1 f y 1 = f y t | y t − 1 f y t − 1 | y t − 2 · · · f y 2 | y 1 f y 1 ( σ 2 ) y 1 ∼ N δ, 1 − ϕ 2 y t | y t − 1 ∼ N ( δ + ϕ y t − 1 , σ 2 ) ( y t − δ + ϕ y t − 1 ) 2 ( ) f y t | y t − 1 ( y t ) = − √ σ 2 2 π σ 2

  12. Log likelihood of AR(1) 1 n w 1 2 1 n w 1 2 w 2 1 12 1 2 t 1 w ( ( y t − δ + ϕ y t − 1 ) 2 ) log f y t | y t − 1 ( y t ) = − log 2 π + log σ 2 w + σ 2 ∑ ℓ ( δ, ϕ, σ 2 w ) = log f y = log f y 1 + log f y i | y i − 1 i = 2 w − log ( 1 − ϕ 2 ) + ( 1 − ϕ 2 ) ( ( y 1 − δ ) 2 ) = − log 2 π + log σ 2 σ 2 ( ( y i − δ + ϕ y i − 1 ) 2 ) ∑ − ( n − 1 ) log 2 π + ( n − 1 ) log σ 2 w + σ 2 i = 2 ( ( ( 1 − ϕ 2 )( y 1 − δ ) 2 + ∑ = − n log 2 π + n log σ 2 w − log ( 1 − ϕ 2 ) + ( y i − δ + ϕ y i − 1 ) 2 σ 2 i = 2

  13. 13 AR(1) Example with ϕ = − 0 . 75, δ = 0 . 5, and σ 2 w = 1, 6 4 ar1 2 0 0 50 100 150 200 Time

  14. Arima MAE BIC=610.17 ## ## Training set error measures: ## ME RMSE MPE ## AIC=600.28 MAPE ## Training set 0.004616374 1.066741 0.8410635 -327.6919 664.3204 ## MASE ACF1 ## Training set 0.9186983 -0.00776572 AICc=600.4 log likelihood=-297.14 Arima (ar1, order = c (1,0,0)) %>% summary () mean ## Series: ar1 ## ARIMA(1,0,0) with non-zero mean ## ## Coefficients: ## ar1 ## ## sigma^2 estimated as 1.149: 0.7593 1.8734 ## s.e. 0.0454 0.3086 ## 14

  15. lm 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 0.00013 *** ## lag(ar1) 0.7621 0.0461 16.530 < 2e-16 *** ## --- ## Signif. codes: ## 0.1161 ## Residual standard error: 1.074 on 197 degrees of freedom ## (1 observation deleted due to missingness) ## Multiple R-squared: 0.5811, Adjusted R-squared: 0.5789 ## F-statistic: 273.2 on 1 and 197 DF, p-value: < 2.2e-16 3.904 0.4530 lm (ar1~ lag (ar1)) %>% summary () Median ## ## Call: ## lm(formula = ar1 ~ lag(ar1)) ## ## Residuals: ## Min 1Q 3Q ## (Intercept) Max ## -3.1863 -0.7596 0.0779 0.6099 2.8638 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) 15

  16. Bayesian AR(1) Model ## ## } sigma2_w <- 1/tau ## tau ~ dgamma(0.001,0.001) ## phi ~ dnorm(0,1) ## delta ~ dnorm(0,1/1000) ## ## # priors ## mu <- delta/(1-phi) ## } ## model{ ## y_hat[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) ## y[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) ## for (t in 2:length(y)) { ## ## y_hat[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) ## y[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) ## ## # likelihood 16

  17. Posteriors 17 delta phi sigma2_w 7.5 param density 5.0 delta phi sigma2_w 2.5 0.0 0.00 0.25 0.50 0.75 0.6 0.7 0.8 0.9 0.8 1.0 1.2 1.4 1.6 1.8 value

  18. Random Walk with Drift 18 with ϕ = 1, δ = 0 . 1, and σ 2 w = 1 using the same models rwd 50 30 10 0 0 100 200 300 400 500 1.0 1.0 0.8 0.8 0.6 0.6 PACF ACF 0.4 0.4 0.2 0.2 0.0 0.0 0 5 10 15 20 25 0 5 10 15 20 25 Lag Lag

  19. lm 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 0.221 ## lag(rwd) 1.001406 0.002632 380.494 <2e-16 *** ## --- ## Signif. codes: ## 0.068588 ## Residual standard error: 1.004 on 498 degrees of freedom ## (1 observation deleted due to missingness) ## Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966 ## F-statistic: 1.448e+05 on 1 and 498 DF, p-value: < 2.2e-16 1.224 ## (Intercept) 0.083981 lm (rwd~ lag (rwd)) %>% summary () Median ## ## Call: ## lm(formula = rwd ~ lag(rwd)) ## ## Residuals: ## Min 1Q 3Q Estimate Std. Error t value Pr(>|t|) Max ## -2.83634 -0.71725 0.00629 0.69476 3.13117 ## ## Coefficients: ## 19

  20. Arima MAE BIC=1455.31 ## ## Training set error measures: ## ME RMSE MPE MAPE ## AIC=1442.66 MASE ## Training set 0.1041264 1.008427 0.8142404 -Inf Inf 0.9996364 ## ACF1 ## Training set 0.01365841 AICc=1442.7 log likelihood=-718.33 Arima (rwd, order = c (1,0,0), include.constant = TRUE) %>% summary () mean ## Series: rwd ## ARIMA(1,0,0) with non-zero mean ## ## Coefficients: ## ar1 ## ## sigma^2 estimated as 1.021: 0.9992 26.4894 ## s.e. 0.0010 23.5057 ## 20

  21. Bayesian Posteriors 21 delta phi sigma2_w 6 300 9 4 param density delta 200 6 phi sigma2_w 2 100 3 0 0 0 −0.05 0.00 0.05 0.10 0.15 0.20 0.992 0.994 0.996 0.998 1.000 0.8 0.9 1.0 1.1 1.2 1.3 value

  22. Non-stationary Bayesian Model ## ## } sigma2_w <- 1/tau ## tau ~ dgamma(0.001,0.001) ## phi ~ dnorm(0,1) ## delta ~ dnorm(0,1/1000) ## ## # priors ## mu <- delta/(1-phi) ## } ## model{ ## y_hat[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) ## y[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) ## for (t in 2:length(y)) { ## ## #y_hat[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) ## #y[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) ## ## # likelihood 22

  23. NS Bayesian Posteriors 23 delta phi sigma2_w 6 150 6 4 100 param 4 density delta phi sigma2_w 2 50 2 0 0 0 −0.1 0.0 0.1 0.2 0.3 0.995 1.000 1.005 1.010 0.8 0.9 1.0 1.1 1.2 1.3 value

  24. Probability of being stationary rwd_params$phi %>% abs () %>% {. < 1} %>% { sum (.) / length (.)} ## [1] 0.3046 24

  25. Correct ARIMA BIC=1433.69 ## Training set 0.01027574 ACF1 ## Inf 0.9922597 ## Training set -2.228961e-07 1.001325 0.8082318 -Inf MASE MPE MAPE MAE RMSE ME ## ## Training set error measures: ## AICc=1425.29 Arima (rwd, order = c (0,1,0), include.constant = TRUE) %>% summary () ## AIC=1425.26 log likelihood=-710.63 ## sigma^2 estimated as 1.007: ## 0.0448 ## s.e. 0.1117 ## drift ## ## Coefficients: ## ## ARIMA(0,1,0) with drift ## Series: rwd 25

  26. Regressing y t on y t 1 gets us an approximate solution, but it ignores the f y 1 y 2 • If p is not much smaller than n then probably a lot Fitting AR(p) We can rewrite the density as follows, p y t y p part of the likelihood. How much does this matter (vs. using the full likelihood)? • If p n then probably not much 26 f ( y ) = f ( y 1 , y 2 , . . . , y t − 1 , y t ) = f ( y 1 , y 2 , . . . , y p ) f ( y p + 1 | y 1 , . . . , y p ) · · · f ( y n | y n − p , . . . , y n − 1 )

  27. Fitting AR(p) We can rewrite the density as follows, How much does this matter (vs. using the full likelihood)? 26 f ( y ) = f ( y 1 , y 2 , . . . , y t − 1 , y t ) = f ( y 1 , y 2 , . . . , y p ) f ( y p + 1 | y 1 , . . . , y p ) · · · f ( y n | y n − p , . . . , y n − 1 ) Regressing y t on y t − p , . . . , y t − 1 gets us an approximate solution, but it ignores the f ( y 1 , y 2 , . . . , y p ) part of the likelihood. • If p is not much smaller than n then probably a lot • If p << n then probably not much

  28. ARMA 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend