jan verspecht bvba
play

Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium - PowerPoint PPT Presentation

Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Calibration of a Measurement System for High Frequency Nonlinear Devices Jan Verspecht Slides of the Doctoral


  1. Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Calibration of a Measurement System for High Frequency Nonlinear Devices Jan Verspecht Slides of the Doctoral Dissertation - Vrije Universiteit Brussel, November 1995

  2. 1 Calibration of a Measurement System for High Frequency Nonlinear Devices Jan Verspecht

  3. 2 Overview • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  4. 3 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  5. 4 The High-Tech World

  6. 5 Engineering Tools Prototyping Producing Measuring Idea Computing

  7. 6 High-Speed Electronic Measurements Filters Dynamic Nonlinear TDR-Oscilloscopes Small signal amplifiers Network Analyzers Interconnects Dynamic Linear “Nonlinear Network” Analyzer Mixers Frequency Multipliers Spectrum Analyzers Power Amplifiers Oscilloscopes Digital Static Nonlinear

  8. 7 VNNA Measurements Vectorial “Nonlinear Network” Analyzer Amplitude & Phase a 2 a 1 input input DUT output output b 1 b 2 Nonlinear

  9. 8 Instrument Calibration VNNA Scientific and Industrial World Ω kg s H W m V A K Hz F J

  10. 9 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  11. 10 VNNA Hardware Preexistent Prototypes Broadband Oscilloscopes Couplers Linear Network Analyzer Test Sets Synthesizers RF Switches Amplitude Cal RF Power Meter Measurements Phase Cal ? Amplitude & Phase Ideal RF signal samplers Incident & Reflected “Golden diode” Port 1 & Port 2

  12. 11 HP-NMDG Prototype precision analog-to-digital convertor Spec Sheet Bandw.: 18GHz 4 channel broadband downconvertor Dyn. Range: 60dB DUT BIAS1 BIAS2 (on wafer)

  13. 12 Traceability Of Calibration Amplitude Cal Standards Lab RF Power Meter Phase Cal “Nose-to-Nose” Calibration Broadband Sampling Oscilloscope Reference Waveform Generator

  14. 13 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  15. 14 Sampling Oscilloscope Basics Trigger Level Delay Setting DAC DELAY TRIGGER ∫ CH1 Screen ∫ CH2 ∫ CH3 ∫ CH4

  16. 15 Timebase Errors HLog estimator Drift Log Spectral Averaging Noise rms Jitter = F(signal derivative) Distortion Phase Demodulation

  17. 16 Vertical Errors Gain DC measurements Offset Limit Signal Distortion Amplitude Dynamical “Nose-to-Nose” Charact.

  18. 17 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  19. 18 Impulse Response = Kick-Out Dirac Delta Impulse Response + Precharged - Kick-Out

  20. 19 “Nose-to-Nose” Measurement + - Measured Kick-Out

  21. 20 Systematic Measurement Error Fourier transform of sampling aperture waveform measured freq. response function ) e j ϕ P ω ( ( ) ) M ω ( ) H ω ( = MEASUREMENT ERROR physical freq. response function

  22. 21 Upperbound For Phase Error Sampling Aperture : Max. Error ( degrees) 12 1 Local Max 10 8 Positive 6 4 2 0 0 10 20 30 40 50 10ps Frequency (GHz) Finite In Time

  23. 22 Comparison With Power Measurements 0 High BW High BW -3 -3 Response (dB) Response (dB) Low BW ow BW -6 -6 -9 -9 -12 -12 0 10 10 30 30 20 20 40 40 50 50 60 60 Frequency (GHz) requency (GHz)

  24. 23 Repeatability and Noise Amplitude Phase 1.5 0.2 Amplitude Diff. (dB) 1 Phase Diff. (deg) 0.1 0.5 0 0 -0.5 -0.1 -1 -0.2 -1.5 0 10 20 30 40 50 0 10 20 30 40 50 Frequency (GHz) Frequency (GHz)

  25. 24 Sampler Linearity amplitude differences (dB) frequency (GHz)

  26. 25 Frequency Response Function Amplitude Phase 0 15 -1 Amplitude (dB) 12.5 Phase (deg) -2 10 -3 7.5 5 -4 2.5 -5 0 -6 5 5 10 15 20 25 30 10 15 20 25 30 Frequency (GHz) Frequency (GHz)

  27. 26 “Nose-To-Nose” Errors (Frequency = 20GHz) Amplitude Phase Time Distortion 8mdB 0.02deg Timing Jitter 150mdB / Time Drift / / Repeatab., Noise 20mdB 0.15deg Nonlinearity < 20mdB < 0.15deg Unknown Phase / 0.72deg

  28. 27 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  29. 28 Error Model a m1 b m1 a m2 b m2 a d1 a d2 a g1 a g2 LINEAR LINEAR DUT b g1 b g2 b d1 b d2 Definition of Variables

  30. 29 Calibration powermeter i i i 1 β 1 0 0 a m 1 a d 1 i δ 1 i i i γ 1 0 0 b m 1 b d 1 K i e j ϕ K i ( ) = i β 2 i i i 0 α 2 0 a m 2 a d 2 i δ 2 i i i 0 γ 2 0 b m 2 b d 2 reference generator classical calibration (LOS, LRM)

  31. 30 Absolute Calibration Amplitude power sensor PORT 1 Phase reference gen. PORT 1

  32. 31 On Wafer: Reciprocity power sensor Data Acquisition Line reference gen. probe tip RECIPROCITY APC-3.5

  33. 32 The Reference Generator trigger signal 1.5m SMA cable differentiator APC-3.5 conn. (m) 1GHz amplifier SRD module 20dB att. (0.5W) 240 180 Amplitude (mV) 120 60 0 -60 -120 -180 -240 200 400 600 800 1000 Time (ps)

  34. 33 Absolute Calibration Factor Amplitude Phase 21 -20 Amplitude (dB) 20 -25 Phase (deg) 19 -30 18 -35 17 -40 16 -45 3 6 9 12 15 18 3 6 9 12 15 18 Frequency (GHz) Frequency (GHz)

  35. 34 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  36. 35 Model vs. Measurements DUT s-parameters as a function of DC bias Large Signal Model (Root or Jansen et al. ) ? = Simulation VNNA Data

  37. 36 Early Results MESFET transistor (INTEC-UG, IMEC): HDA, fundamental 3GHz : Root-model : VNNA measurements

  38. 37 More Advanced Results HEMT transistor (ESAT-KUL, IMEC): HDA, fundamental 3GHz 0 Harmonic output power (dBm) -10 -145 Phase (deg) -150 -20 -155 -30 -160 -165 -40 -25 -20 -15 -10 Input power (dBm) -50 : Jansen et al. model -60 : VNNA measurements -5 -25 -20 -15 -10 Input power (dBm)

  39. 38 Time Domain 0.1 0.05 Amplitude (V) 0 -0.05 -0.1 -0.15 0 100 200 300 400 500 600 Time (ps) : VNNA measurement : Jansen et al. model : incident voltage wave

  40. 39 • Introduction • Vectorial “Nonlinear Network” Analyzer Hardware • Accuracy of Broadband Sampling Oscilloscopes • The “Nose-to-Nose” Calibration Procedure • Absolute Calibration of a VNNA • Consistency Check: Model versus Measurements • Conclusions

  41. 40 Conclusions • The Instrumentation And Calibration Procedure Developed Allows the Accurate Measurement of Phase and Amplitude of the Spectral Components of Incident and Scattered Voltage Waves at the Signal Ports of a Nonlinear Microwave Device. • The Relative Calibration And Amplitude Calibration Are Traceable To National Standards, The Phase Calibration Is Traceable To The “Nose-To-Nose” Calibration Procedure.

  42. 41 Future Research • Phase Calibration Traceable To National Standards • More Theoretical Work Concerning “Nose-To-Nose” • Implementing The “Nose-To-Nose” For Photo-Conductive Samplers • Putting Error Flags On VNNA Measurements • Towards Commercial Use Of VNNA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend