implementation of advanced
play

Implementation of Advanced Solar-Cell Analysis at Cell Test Ronald - PowerPoint PPT Presentation

Implementation of Advanced Solar-Cell Analysis at Cell Test Ronald A. Sinton, Adrienne L. Blum Wes Dobson, Harrison Wilterdink, Justin H. Dinger, Cassidy Sainsbury Sinton Instruments, Boulder, CO, 80301, USA A vision for end-to-end metrology


  1. Implementation of Advanced Solar-Cell Analysis at Cell Test Ronald A. Sinton, Adrienne L. Blum Wes Dobson, Harrison Wilterdink, Justin H. Dinger, Cassidy Sainsbury Sinton Instruments, Boulder, CO, 80301, USA

  2. A vision for end-to-end metrology for electronic quality (1999 NREL Silicon Workshop)

  3. A vision for end-to-end metrology for electronic quality (2016 NREL Silicon Workshop) Step Metric Fundamental Analysis Impact Analysis Feedstock τ vs. Δn τ vs. Δn Implied IV curve Crystal τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Wafer τ vs. Δn, Ω -cm, trapping τ vs. Δn Sorting Dopant diffusion τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Passivation τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Cell I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve Module I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve System I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve

  4. Feedstock Qualification (Lifetime Test)

  5. Feedstock Qualification (Lifetime Test) 7.38 ms

  6. Suns-V oc Curves at the Array Level (3.6 KW)

  7. A vision for end-to-end metrology for electronic quality Step Metric Fundamental Analysis Impact Analysis Feedstock τ vs. Δn τ vs. Δn Implied IV curve Crystal τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Wafer τ vs. Δn, Ω -cm, trapping τ vs. Δn Sorting Dopant diffusion τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Passivation τ vs. Δn, Ω -cm, trapping τ vs. Δn Implied IV curve Cell I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve Module I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve System I, V, R s , R sh , τ vs. Δn , N A τ vs. Δn Real/pseudo-IV curve

  8. Cell Test is Unique: 100% Testing of Wafers We need to take maximum advantage of this opportunity! Device physics at cell test: • Lifetime vs. injection level • bulk lifetime and emitter saturation current densities • Relevant measurement of series resistance (Suns-V oc curve) • Time response of high-efficiency cells (Capacitance) • Examples: • n-type high-efficiency solar cell • A study of p-type solar cells spanning low to high efficiency • Power loss analysis for record-efficiency cell

  9. R&D and Production Cell Testing • Laboratory cell tester • MultiFlash technology • Measures full IV curve with conventional parameters (Eff, J sc , V oc , V mp , J mp , FF) • Measures Suns-V oc (pseudo parameters, lifetime vs. injection level, J 0 , BRR, lifetime at V mp , dark R sh , SUBSTRATE DOPING) • Production cell tester • Production cell tester (250 MW installed in production to date) • All the same parameters • New SingleFlash technology enables high-speed testing • Potential for 4800 tests per hour • ~ 200ms cell test time of stationary cell

  10. Methodology: Outline Parameter Method IV parameters MultiFlash or SingleFlash technology; filtered Xenon light Substrate doping Time-dependent continuity equation Lifetime vs. excess carrier density Time-dependent Suns-V oc data using doping result R s Evaluation of IV and Suns-V oc curves at J mp R sh Ohm-meter in dark at 0 Volts Voltage (Strategic, 6 points) 8 Channel simultaneous data acquisition Current same Intensity same (using silicon reference cell) Temperature RTD Capacitance effects Constant charge method ( EUPVSEC Dresden, 2006)

  11. Lifetime data: Everyone does this with test wafers and a lifetime tester V mp

  12. IV curves: BSF, PERC, n-type, Auger limit

  13. But it is the same thing! Lifetime data and IV data ∆𝑜 𝑙 , ∆𝑜 𝑙+1 , ∆𝑜 𝑙+2 … Calculate Recombination: Calculate Voltage: 𝑊 + 𝐾𝑆 𝑡 = 𝑙𝑈 𝑂 𝐵 + ∆𝑞 ∆𝑜 𝐾 = 𝑄ℎ𝑝𝑢𝑝𝑕𝑓𝑜𝑓𝑠𝑏𝑢𝑗𝑝𝑜 𝑟 ln −𝑆𝑓𝑑𝑝𝑛𝑐𝑗𝑜𝑏𝑢𝑗𝑝𝑜 − 𝑊 𝑜 𝑗2 𝑆 𝑡ℎ (𝐾 𝑙 , 𝑊 𝑙 ), (𝐾 𝑙+1 , 𝑊 𝑙+1 ), … Including series resistance and shunt

  14. IV in Terms of Emitters and Bulk Lifetime 𝑊 = 𝑙𝑈 𝑟 ln (𝑂 𝐵 + ∆𝑞)(∆𝑜) − 𝐾𝑆 𝑡 𝑜 𝑗2 𝐷𝑣𝑠𝑠𝑓𝑜𝑢 = 𝑄ℎ𝑝𝑢𝑝𝑕𝑓𝑜𝑓𝑠𝑏𝑢𝑗𝑝𝑜 − ∆𝑜𝑟𝑋 𝑂 𝐵 + ∆𝑞 ∆𝑜 − 𝑊 + 𝐾 0𝑔𝑠𝑝𝑜𝑢 + 𝐾 0𝑐𝑏𝑑𝑙 𝑜 𝑗2 𝜐 𝑐𝑣𝑚𝑙 𝑆 𝑡ℎ [Recombination] “Thin - base limit”

  15. IV in Terms of Emitters and Bulk Lifetime 𝑊 = 𝑙𝑈 𝑟 ln (𝑂 𝐵 + ∆𝑞)(∆𝑜) − 𝐾𝑆 𝑡 𝑜 𝑗2 𝐷𝑣𝑠𝑠𝑓𝑜𝑢 = 𝑄ℎ𝑝𝑢𝑝𝑕𝑓𝑜𝑓𝑠𝑏𝑢𝑗𝑝𝑜 − ∆𝑜𝑟𝑋 𝑂 𝐵 + ∆𝑞 ∆𝑜 − 𝑊 + 𝐾 0𝑔𝑠𝑝𝑜𝑢 + 𝐾 0𝑐𝑏𝑑𝑙 𝑜 𝑗2 𝜐 𝑐𝑣𝑚𝑙 𝑆 𝑡ℎ

  16. R s Measurement Using Suns-V oc Curve R sh = Δ V/ Δ J R s = Δ V/J mp R s from Suns-V oc does NOT depend on quality of fit to a model (no 1- or 2-diode equations or such nonsense)

  17. Biggest Challenge with High-Efficiency n-type Time response of high-efficiency cells (capacitance)

  18. Ramp-rate Artifacts (PC1D simulations) Modeled Si cell (V oc = 720 mV, thickness = 200 µm) IV curves at different ramp rates 0.045 0.040 0.035 Current Density (A/cm 2 ) Voltage Ramp Rates Steady State 0.030 0.8 100 ms 2 ms 100 ms 0.7 50 ms 0.025 0.6 Voltage/Cell 0.5 20 ms 0.020 0.4 10 ms (industry std) 0.3 0.015 0.2 5 ms 0.1 2 ms 0.010 0 0 20 40 60 80 100 0.005 Time (ms) 0.000 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Voltage (V)

  19. High-Efficiency n-type Cells: 200X Higher Capacitance! SunPower, Sanyo 2016 PERC Cell (3 Ω -cm) Standard Screen Print (1 Ω -cm)

  20. Eliminating errors due to slow time response during flash testing ∆𝑜 𝑙 , ∆𝑜 𝑙+1 , ∆𝑜 𝑙+2 … Calculate Recombination: Calculate Voltage: 𝑊 + 𝐾𝑆 𝑡 = 𝑙𝑈 𝑂 𝐵 + ∆𝑞 ∆𝑜 𝐾 = 𝑄ℎ𝑝𝑢𝑝𝑕𝑓𝑜𝑓𝑠𝑏𝑢𝑗𝑝𝑜 𝑟 ln −𝑆𝑓𝑑𝑝𝑛𝑐𝑗𝑜𝑏𝑢𝑗𝑝𝑜 − 𝑊 𝑜 𝑗2 𝑆 𝑡ℎ (𝐾 𝑙 , 𝑊 𝑙 ), (𝐾 𝑙+1 , 𝑊 𝑙+1 ), … Sol olution: Test under constant ch charge condit itions: Measure V and J, while holding (V + J × R s ) constant using a feedback circuit. 10 years of industrial production and R&D experience with this technique. R. A. Sinton, 21st EU PVSEC, (2006); pp. 634-638 ; US patents 7696461 B2 2010, 7309850B2 2007

  21. Eliminating errors due to slow time response during flash testing • SintonDresden2006.pdf Sol olution: Test under constant ch charge condit itions: Measure V and J, while holding (V + J × R s ) constant using a feedback circuit. 10 years of industrial production and R&D experience with this technique. R. A. Sinton, 21st EU PVSEC, (2006); pp. 634-638 ; US patents 7696461 B2 2010, 7309850B2 2007

  22. Example: IV test of a high-efficiency n-type cell High-Efficiency n-type

  23. IV-test example: N-type high efficiency

  24. IV-test example: N-type high efficiency 2 W Jof+ Job = slope*qn i Bulk lifetime @ -N D

  25. IV-test Example: n-type High Efficiency

  26. Example: IV test of a PERC cell PERC cell

  27. Example: IV test of a PERC cell

  28. IV-test example: PERC cells

  29. Lifetime and Substrate Doping Measurements of Solar Cells and Application to In-Line Process Control Adrienne L. Blum Wes Dobson, Harrison Wilterdink, Justin H. Dinger, Ronald A. Sinton Sinton Instruments, Boulder, CO, 80301, USA IEEE PVSC, Portland, Oregon, 2016

  30. Measurement Samples: P-type Study • P-type cells processed with varying techniques: • Multi-crystalline Al BSF cells • High Performance Multi-crystalline Al BSF cells • Multi crystalline PERC cells • Monocrystalline PERC cells • Monocrystalline PERC cells A. Blum et al. IEEE PVSC, Portland, Oregon, 2016

  31. Doping Measurement: An Opportunity Substrate doping and t vs. D n at the cell level • • Substrate doping • Wafer position in ingot or brick  prediction of [O]/other impurities  potential prediction of LID behavior • Information relevant to lateral series resistance in PERC cells • Gives final substrate doping, including changes from high temp steps • Effective lifetime • Surface passivation quality • Substrate quality • Contamination during high-temperature processing A. Blum et al. IEEE PVSC, Portland, Oregon, 2016

  32. Measurement Parameters • Analyze pV mp and efficiency dependence on substrate doping (N A ) and effective lifetime ( τ eff ) • pV mp is used because the five groups of cells come from different processing techniques, allows for a comparison independent of R s • pV mp : 515-584mV • Efficiency: 15.8-21% • τ eff : 5-100 μ s • N A : 5×10 15 -3×10 16 cm -3 A. Blum et al. IEEE PVSC, Portland, Oregon, 2016

  33. pV mp and Efficiency Correlate to τ ×N A • Five different cell processing techniques all follow the same trend 0.59 mc-Si Al BSF mc-Si (high 0.58 performance)Al BSF 0.57 mc-Si PERC Mono PERC 0.56 pVmp (V) Mono PERC 0.55 0.54 0.53 0.52 0.51 16 17 18 10 10 10 t x N A (  s/cm 3 ) 𝐾 𝑡𝑑 − 𝐾 𝑂 𝐵 + ∆𝑜)𝜐 𝑓𝑔𝑔 𝑊 + 𝑆 𝑡 𝐾 = 𝑙𝑈 𝑟 𝑚𝑜 𝑟𝑋𝑜 𝑗2 A. Blum et al. IEEE PVSC, Portland, Oregon, 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend