hp ps collimator studies
play

HP-PS Collimator Studies Androula Alekou Daniel Spitzbart - PowerPoint PPT Presentation

HP-PS Collimator Studies Androula Alekou Daniel Spitzbart androula.alekou@cern.ch daniel.spitzbart@cern.ch 13.11.2013 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Outline Code Additional secondary collimators at 90


  1. HP-PS Collimator Studies Androula Alekou Daniel Spitzbart androula.alekou@cern.ch daniel.spitzbart@cern.ch � 13.11.2013

  2. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Outline • Code • Additional secondary collimators at 90° • Influence of • primary/scraper thickness & material • halo size • smear size • Jaw opening � 2

  3. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 New automated code • Executable 
 + Mathematica • Takes into account the different loss types • Losses into the aperture • Exceeding threshold values of SixTrack • Outputfile with statistics for all runs • Option for saving the last part of the track for plotting • Faster, lesser storage used � 3

  4. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 New automated code • Example track � 4

  5. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Positions • Basically 6 Collimators (two stage system): • 2 Primaries/PC (scrapers) - horizontal / vertical • 4 Secondaries (absorbers) - 2 horizontal / 2 vertical • For Np=2.5, Ns=3.0 Np - aperture primary collimators, Ns - aperture of secondary collimators • HP 1 VP 1 HS 1 HS 2 VS 1 VS 2 opt. phase [°] 0 0 33.57 146.43 33.57 146.43 phase [°] 0 0 32.8 143.1 32.2 147.1 s-Pos [m] 315.57 315.67 331 386 329 364.4 � 5

  6. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Use of additional collimators at 90° • Np=2.5, Ns=3.0 • Better efficiency with additional collimators at 90° HS 90 VS 90 Inefficiency opt. phase [°] 90 90 Inefficiency 0.4 phase [°] 88.8 90.2 s-pos[m] 362.4 352.5 0.3 used properties: 2.5 sigma halo 0.016 sigma smear 0.2 graphite primaries tungsten secondaries Normal setup 0.1 Additional 90° Thickness @ m D 0.006 0.008 0.010 0.012 0.014 � 6

  7. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Inefficiency Graphite primaries Inefficiency 0.20 0.18 halo 2.5 H 0.16 halo 2.5 V halo 2.6 V 0.14 variation of primary thickness secondary material: tungsten 0.12 smear size 0.016 Primary thickness @ m D 0.006 0.008 0.010 0.012 0.014 0.016 Copper primaries Tungsten primaries Inefficiency Inefficiency 0.30 0.30 0.25 0.25 2.5 H 2.5 V 2.6 H 0.20 2.6 V 0.20 0.15 0.15 0.0010Primary thickness @ m D 0.0040Primary thickness @ m D 0.0002 0.0004 0.0006 0.0008 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 � 7

  8. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Cleaning speed Graphite primaries Cleaning speed 0.50 0.45 0.40 2.5 H 2.5 V 0.35 2.6 H 0.30 lower value - faster cleaning 0.25 Primary thickness @ m D 0.006 0.008 0.010 0.012 0.014 Copper primaries Tungsten primaries Cleaning speed Cleaning speed 0.8 0.7 0.4 0.6 2.5 H 2.5 V 0.5 0.3 2.6 H 2.6 V 0.4 0.3 0.2 0.2 0.1 0.1 0.0010Primary thickness @ m D 0.0040Primary thickness @ m D 0.0002 0.0004 0.0006 0.0008 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 � 8

  9. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles 3 - VP1 H halo, 6mm 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 graphite 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 calculated losses - checked trajectory -> hit aperture 20 sixtrack losses - threshold value (angle, radius) exceeded s - Pos @ m D 0 300 350 400 450 500 � 9

  10. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles 3 - VP1 H halo, 19mm 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 graphite 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 With thicker primary -> area of losses 20 moved towards begin of collimator area � losses more distributed between collimators s - Pos @ m D 0 300 350 400 450 500 � 10

  11. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 5mm Absorbed particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 11

  12. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 5mm Lost particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 12

  13. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 19mm Absorbed particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 thicker primary -> particles receive more kick 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 13

  14. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 19mm Lost particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 14

  15. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Conclusion of tracks • With thicker scrapers -> more kick • if we want a better impact parameter at the absorbers, this is needed � • Beam blows up at the quadrupole area at s=340m • in H plane, defocussing - focussing -> issue • in V plane, focussing - defocussing -> smaller problem � 15

  16. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.2mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 16

  17. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.6mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 Losses moved to towards front of collimator area also peak of losses at s=340 (QP area) as seen before s - Pos @ m D 0 300 350 400 450 500 � 17

  18. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles V halo 0.3mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 18

  19. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles V halo 0.7mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 Losses also moved to towards front of collimator area 20 no peak of losses at s=340 (QP area) -> V plane gets focussed first -> beamsize does not increase that much s - Pos @ m D 0 300 350 400 450 500 � 19

  20. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.8mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 copper 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 20

  21. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 2mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 copper 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 Behavior quite similar to tungsten 20 s - Pos @ m D 0 300 350 400 450 500 � 21

  22. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Bigger jaw opening • Np=3.0, Ns=3.5 • Inefficiency increases, more losses 
 -> Horizontal beam size increases significantly at s=340m (QP) - can be also seen at other setup, but more important here • More studies to be done on that topic HP 1 VP 1 HS 1 HS 2 VS 1 VS 2 opt. phase [°] 0 0 31 149 31 149 phase [°] 0 0 30 152.4 29.1 147.5 s-Pos [m] 315.55 315.59 329.6 391.6 327 364.5 � 22

  23. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Halo size / smear size • If halo is exactly the size of the scrapers, a lot of particles never hit a collimator -> small efficiency Efficiency vs smear (halo=const=3) Efficiency 0.45 Efficiency vs smear (halo=const=2.5) Efficiency 0.4 0.47 Np=3.0 Data for more smear 0.465 points needed 0.35 Ns=3.5 0.46 Np=2.5 0.3 0.455 Ns=3.0 0.45 0.25 0.445 0.2 0.44 0.435 0.15 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.03 0.04 0.05 0.06 0.07 0.08 smear [ ] σ smear [ ] σ � 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend