general overview of the collimator bpm system
play

General overview of the collimator BPM system Collimator BPM - PowerPoint PPT Presentation

General overview of the collimator BPM system Collimator BPM Meeting March 14 th , 2014 G. Valentino with contributions from B. Salvachua, S. Redaelli Outline LHC collimator layout upgrade Recap of SPS beam tests with BPM collimator


  1. General overview of the collimator BPM system Collimator BPM Meeting March 14 th , 2014 G. Valentino with contributions from B. Salvachua, S. Redaelli

  2. Outline • LHC collimator layout upgrade • Recap of SPS beam tests with BPM collimator prototype • Proposed software architecture • A first view of the top-level GUI • First thoughts on beam commissioning Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 2

  3. LHC Collimator Layout Upgrade (only BPM equipped collimators) new naming convention for BPM-equipped collimators: TCTH/V TCTPH/V TCSG TCSP Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 3

  4. Why do we need software upgrades? • During 2010-2013 , all collimators were aligned with feedback from BLMs. • Alignment procedure automated: feedback loop, pattern recognition of loss spikes, BLM signal crosstalk. Disadvantages of BLM-based alignment: • Alignment time lengthy: even if reduced from 30 hours to ~5 hours (Ph.D. work) • Need to place setup error margins in the settings ( β * reach reduced) • Setup errors could reduce cleaning efficiency/compromise MP • During post-LS1 operation , 18 collimators (20%) will be equipped with BPMs, 2 per jaw (up/down). Therefore, software is needed to: 1. Align the jaws with feedback from the BPMs. 2. Monitor the beam position within the collimator jaws Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 4

  5. Updating collimation data in LSA DB CERN name (MTF) HCTCTP__001-CQ000XXX CERCA name TCLP_00X MADX name TCTPH.XXX.B1 ID Angle 0.0 Material W Detailed$flatness$M$Jaw$AC$on$meach.$Stop$IN Length 1.0 Detailed$flatness$data Long.$Pos.$[cm] z$=$M20mm z$=$0$mm z$=$+20mm Long. Pos. [mm] z$=$M20mm z$=$0$mm z$=$+20mm Beam B1 Left$jaw$on$mech.$Stop$IN 270 6.021087325 6.013326008 5.997269838 270 6.021087325 6.013326008 5.997269838 Family TCTP 425 6.026393126 6.015365769 6.013486383 425 6.026393126 6.015365769 6.013486383 IP IP1 580 6.029316472 6.028263995 6.014212002 580 6.029316472 6.028263995 6.014212002 735 6.054541482 6.050674859 6.025207925 735 6.054541482 6.050674859 6.025207925 BLMI BLMEI.XXX 890 6.022303921 6.022746377 6.002078022 890 6.022303921 6.022746377 6.002078022 BLMS BLMES.XXX 1045 6.024006101 6.013435873 5.997271748 1045 6.024006101 6.013435873 5.997271748 1200 6.023813421 6.011267516 6.006284658 1200 6.023813421 6.011267516 6.006284658 Jaw$corner$notation LEFT$UP C AXIS_A 1 Detailed$flatness$M$Jaw$BD$on$meach.$Stop$IN LEFT$DOWN A AXIS_B 1 Detailed$flatness$data Long.$Pos.$[cm] z$=$M20mm z$=$0$mm z$=$+20mm Long.$Pos.$[cm] z$=$M20mm z$=$0$mm z$=$+20mm RIGHT$UP D AXIS_C 1 Right$jaw$on$mech.$Stop$IN 270 M6.031842302 M6.033233687 M6.052173334 270 M6.03184230 M6.03323369 M6.05217333 RIGHT$DOWN B AXIS_D 1 425 M6.039822491 M6.039842004 M6.05122229 425 M6.03982249 M6.03984200 M6.05122229 580 M6.039988046 M6.048304754 M6.057196241 580 M6.03998805 M6.04830475 M6.05719624 AXIS_E 0 735 M6.01374431 M6.031971645 M6.027811825 735 M6.01374431 M6.03197164 M6.02781183 AXIS_LEFT_UP 1 890 M6.030017325 M6.045112025 M6.059922676 890 M6.03001732 M6.04511202 M6.05992268 AXIS_LEFT_DOWN 1 1045 M6.051877362 M6.051085096 M6.067618275 1045 M6.05187736 M6.05108510 M6.06761827 AXIS_RIGHT_UP 1 1200 M6.037207252 M6.035192779 M6.045285349 1200 M6.03720725 M6.03519278 M6.04528535 AXIS_RITHG_DOWN 1 AXIS_TANK 0 Measurements$in$the$metrology$frame: Screw$Serial$Number LEFT$UP 8092495M20 Screw$S$N A 8092495M13 OUT IN OUT IN Mechanical stops LEFT$DOWN 8092495M13 B 8092495M38 Mechanical$STOPS LEFT$UP M29.98106004 6.011267516 Mechanical$STOPS A M29.99007486 6.013326008 Max$gap AB 60.00043621 RIGHT$UP 8092495M79 C 8092495M20 LEFT$DOWN M29.99007486 6.013326008 B 30.01036135 M6.033233687 CD 59.99422911 RIGHT$DOWN 8092495M38 D 8092495M79 RIGHT$UP 30.01316908 M6.035192779 C M29.98106004 6.011267516 Min$gap AB 0.37795732 RIGHT$DOWN 30.01036135 M6.033233687 D 30.01316908 M6.035192779 CD 0.38100777 ANTI$M$UP 0.38100777 BPM_NAME_UP BPXXX ANTI$M$DOWN 0.37795732 BPM_NAME_DOWN BPXXX OUT IN OUT IN Switches BPM$FrontMEnd$ID UP FrontMEnd$ID AB Switches LEFT$UP M29.65106004 5.681267516 Switches A M29.67007486 5.673326008 Max$gap AB 59.3804362 DOWN CD LEFT$DOWN M29.67007486 5.673326008 B 29.71036135 M5.663233687 CD 59.3442291 RIGHT$UP 29.69316908 M5.695192779 C M29.65106004 5.681267516 Min$gap AB 0.47795732 Button$channel$ID LEFT$UP Button$channel$ID A RIGHT$DOWN 29.71036135 M5.663233687 D 29.69316908 M5.695192779 CD 0.50100777 LEFT$DOWN B RIGHT$UP C ANTI$M$UP 0.50100777 RIGHT$DOWN D ANTI$M$DOWN 0.47795732 Button$distance$to$JAW LEFT$UP To$JAW A Maximum$flatness$error Left 0.039407344 Maximum$flatness$error AC 0.039407344 LEFT$DOWN B Right M0.019113451 (mm) BD M0.019113451 RIGHT$UP C RIGHT$DOWN D Mechanical$plays Left$UP 0.014 Mechanical$plays A 0.018 Button$diestance$to$SURFACE LEFT$UP To$SURFACE A Left$DOWN 0.018 B 0.006 LEFT$DOWN B Right$UP 0.005 C 0.014 RIGHT$UP C Right$Down 0.006 D 0.005 RIGHT$DOWN D AutoMretraction Left$UP 0.000 AutoMretraction A 0.018 Button$Diameter LEFT$UP Diameter A LEFT$DOWN B Left$DOWN 0.000 B 0.006 RIGHT$UP C Right$UP 0.000 C 0.014 RIGHT$DOWN D Right$Down 0.000 D 0.005 Button$Capacitance LEFT$UP Capacitance A Maximum$tilt$angle Left$Plus 3.58 Maximum$tilt$angle AC$Plus 3.58 LEFT$DOWN B Left$Minus 3.55 AC$Minus 3.55 RIGHT$UP C Right$Plus 3.70 BD$Plus 3.70 RIGHT$DOWN D Right$Minus 3.60 BD$Minus 3.60 Button$attenuation$coeffient LEFT$UP Attenuation$Coef. A Transverse$tank$position Stop$UP LEFT$DOWN B Switch$UP RIGHT$UP C Set$point RIGHT$DOWN D Switch$DOWN Stop$DOWN C. Boccard, M. Gasior, B. Salvachua new BPM-related data for LSA DB table Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 5

  6. Recap of SPS beam tests • BPM-based alignment algorithm needed due to BPM non-linearities. • Otherwise, we would just need to move the jaws in or out in one step! • Algorithm seeks to minimize via successive approximation: 0.174 BPM Electrodes [arb. units] 0.173 0.172 0.171 Jaw furthest away from the beam moved in to: 0.170 0.169 BPM LU 0.168 BPM RU BPM LD 0.167 BPM RD 0.166 0.2 Beam Center [mm] 0.1 0.0 -0.1 -0.2 New: Individual jaw corners aligned! -0.3 Center UP -0.4 Center DW 30.0 Left Jaw Positions [mm] 29.9 29.8 Jaw LU Improvement by two orders of magnitude 29.7 Jaw LD 29.6 29.5 over BLM-based alignment time! 29.4 29.3 29.2 -29.60 Right Jaw Positions [mm] -29.65 -29.70 -29.75 Jaw RU -29.80 Jaw RD -29.85 Algorithm + results published in IPAC13 and PRST-AB -29.90 -29.95 -30.00 0 5000 10000 15000 20000 25000 30000 Time [ms] • Simulated non-linearity correction coefficients (A. Nosych) can be used for monitoring purposes (or to speed up the alignment by a few seconds..). Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 6

  7. Software architecture used in SPS beam tests of BPM collimator From this... Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 7

  8. Proposed software architecture for LHC ... to this UDP(12.5(Hz( BLM% JAWS% JAWS% ( m e t s y S d ( e s o p o r P CBPM% CBPM% Exis6ng% FESA%Class% Logic/Server< DOROS% level( RequiredAbsolutePosi6on/LU% MeasuredCornerPosi6ons/LU% RequiredAbsolutePosi6on/LD% MeasuredCornerPosi6ons/LD% RequiredAbsolutePosi6on/RU% MeasuredCornerPosi6ons/RU% RequiredAbsolutePosi6on/RD% MeasuredCornerPosi6ons/RD% Proposed( UDP( CMW% TCP( FESA(Class( 1(Hz(Subscribe( 8(Hz(Set( 1(Hz( 25(Hz( 1(Hz(Subscribe( 12.5%Hz%BLM%data% DOROS% Collimator%Data%Concentrator% Concentrator% Controller*% Concentrator% e ( b c r i b s S u z ( ( H 1 0 BLM% BPM% Scan% Alignment% Alignment% UDP(25(Hz( Algorithm% ( e b i r c s 1(Hz(Subscribe( b u S ( z H ( 1 Proposed( 12(Hz(Subscribe( CMW% FESA(Class( 1(Hz(Set( 12.5(Hz(Subscribe( Subscribe( ( t e 1(Hz(Set( S 1(Hz(( ( z H ( OFC% 8 GUI/Top< Input% SIS% level( Perform% Perform% Online%Monitoring% coefficients% Interlock% Logging% Alignment% Scan% Display% *conversion%of%integers%to%electrode%signals+beam%pos%(mm)% Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 8

  9. Interactions between the Alignment and DOROS classes • Alignment DOROS (1 Hz) • The Alignment class will subscribe to the MeasuredCornerPositions property from the LHCCollimators FESA class. • It will then provide the data for all BPM-equipped collimators (String collName, double[] jawCornerData) • DOROS Alignment + other clients (1 - 10 Hz) • DOROS calculates UP/DW beam positions from the electrode signals and the jaw positions for each collimator via: • ; B = L - R (linearized position) • (corrected position) Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 9

  10. First view of the top-level GUI Alignment: BLM (for reference only) (similar to SPS tests) Jaw positions will have possibility to align all collimators simultaneously BPM electrodes Relative beam position Tilt Absolute beam position Monitoring: (similar to current Coll$Name$ Coll$Name$ Coll$Name$ . . . collimator fixed display) very preliminary view, 1σ# 1σ# 1σ# circle turns red if 1 σ Indication of Coll#half#gap# Coll#half#gap# Coll#half#gap# beam position limit exceeded e.g.#9σ# e.g.#9σ# e.g.#9σ# Collimator BPM meeting - 14/03/2014 G. Valentino - BE/ABP 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend