on algebraic branching programs of small width
play

On algebraic branching programs of small width Karl Bringmann - PowerPoint PPT Presentation

On algebraic branching programs of small width Karl Bringmann Christian Ikenmeyer MPII Saarbr ucken MPII Saarbr ucken Jeroen Zuiddam CWI Amsterdam Small width algebraic branching programs: surprisingly powerful 1. Width-2 algebraic


  1. On algebraic branching programs of small width Karl Bringmann Christian Ikenmeyer MPII Saarbr¨ ucken MPII Saarbr¨ ucken Jeroen Zuiddam CWI Amsterdam

  2. Small width algebraic branching programs: surprisingly powerful 1. Width-2 algebraic branching programs with approximation are as powerful as formulas 2. Width-1 algebraic branching programs with nondeterminism are as powerful as circuits 2

  3. 1. Definitions • Algebraic branching programs • Formulas • Complexity classes VP k and VP e • Approximation classes VP k and VP e 2. Historical context 3. Statement of main result 4. Proof sketch 5. Statement of nondeterminism result 3

  4. Algebraic branching program (ABP) definition  edge labels are    affine linear forms: s  t · · · width α 0 + α 1 x 1 + · · · + α n x n   ( α i ∈ C )   � �� � length � f ( x 1 , . . . , x n ) = product of edge labels on path s - t paths in graph 4

  5. Algebraic branching program (ABP) definition  edge labels are    affine linear forms: s  t · · · width α 0 + α 1 x 1 + · · · + α n x n   ( α i ∈ C )   � �� � length � f ( x 1 , . . . , x n ) = product of edge labels on path s - t paths in graph x x Example s y y t � x 2 + y 2 + z 2 = s - t path z z products Complexity L k ( f ) = minimum length of any width- k ABP computing f 4

  6. Formula definition leaves x 1 x 1 x 2 2 3   variables x i     constants α i ∈ C   × +    nodes depth  ×  + , ×      fan-in 2    + fan-out 1 size = number of nodes f ( x 1 , . . . , x n ) = evaluation of tree Complexity L e ( f ) = minimum size of any formula computing f 5

  7. Classes VP k and VP e definition Recall: • L k = width- k ABP length Recall: • L e = formula size family: sequence ( f n ) n ∈ N of polynomials f n ( x 1 , . . . , x poly( n ) ) � � VP k := k ∈ N families ( f n ) n ∈ N with L k ( f n ) = poly( n ) � � e := families ( f n ) n ∈ N with L e ( f n ) = poly( n ) VP 6

  8. Classes VP k and VP e definition Recall: • L k = width- k ABP length Recall: • L e = formula size family: sequence ( f n ) n ∈ N of polynomials f n ( x 1 , . . . , x poly( n ) ) � � VP k := k ∈ N families ( f n ) n ∈ N with L k ( f n ) = poly( n ) � � e := families ( f n ) n ∈ N with L e ( f n ) = poly( n ) VP Ben-Or and Cleve (1988) inspired by Barrington’s theorem (1986) VP 3 = VP 4 = · · · = VP e In particular: width-3 ABPs can compute any polynomial Allender and Wang (2011) Strict inclusion: VP 2 � VP 3 No width-2 ABP computes x 1 x 2 + · · · + x 15 x 16 6

  9. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  10. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  11. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  12. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  13. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  14. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  15. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  16. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  17. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 7

  18. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 = 2 − x 2 + ε 2 7

  19. Approximation s t � ε − 1 x ε 2 − ε − 1 x s - t path products = 1 + 1 + ε − 1 x − ε − 1 x + εx − εx − x 2 + ε 2 = 2 − x 2 + ε 2 ε → 0 • 2 − x 2 + ε 2 2 − x 2 − → • L 2 (2 − x 2 + ε 2 ) ≤ 4 ( ε > 0) We say “ L 2 (2 − x 2 ) ≤ 4 ” 7

  20. Approximation ε → 0 • 2 − x 2 + ε 2 2 − x 2 − → • L 2 (2 − x 2 + ε 2 ) ≤ 4 ( ε > 0) “ L 2 (2 − x 2 ) ≤ 4 ” 8

  21. Approximation ε → 0 • 2 − x 2 + ε 2 2 − x 2 − → • L 2 (2 − x 2 + ε 2 ) ≤ 4 ( ε > 0) “ L 2 (2 − x 2 ) ≤ 4 ” Border complexity cp. border rank (Bini et al., Strassen) V = C [ x 1 , . . . , x n ] ≤ d degree ≤ d polyn. endowed with Euclidean norm L ( f ) := smallest r for which there exist ( g ε ) ε ∈ R > 0 ⊆ V and • lim ε → 0 g ε = f • L ( g ε ) ≤ r for all ε > 0 8

  22. Approximation ε → 0 • 2 − x 2 + ε 2 2 − x 2 − → • L 2 (2 − x 2 + ε 2 ) ≤ 4 ( ε > 0) “ L 2 (2 − x 2 ) ≤ 4 ” Border complexity cp. border rank (Bini et al., Strassen) V = C [ x 1 , . . . , x n ] ≤ d degree ≤ d polyn. endowed with Euclidean norm L ( f ) := smallest r for which there exist ( g ε ) ε ∈ R > 0 ⊆ V and • lim ε → 0 g ε = f • L ( g ε ) ≤ r for all ε > 0 � � k ∈ N VP k = families ( f n ) n ∈ N with L k ( f n ) = poly( n ) � � e = families ( f n ) n ∈ N with L e ( f n ) = poly( n ) VP Clearly L ( f ) ≤ L ( f ) . Therefore VP k ⊆ VP k , e , etc VP e ⊆ VP 8

  23. More historical context Valiant (1979) VP e ⊆ VP s ⊆ VP ⊆ VNP ? e , VP s , VP �⊇ Valiant’s conjectures VP VNP 9

  24. More historical context Valiant (1979) VP e ⊆ VP s ⊆ VP ⊆ VNP ? e , VP s , VP �⊇ Valiant’s conjectures VP VNP Strassen, Mulmuley-Sohoni (GCT), B¨ urgisser ? Extended conjectures VP s , VP �⊇ VNP 9

  25. More historical context Valiant (1979) VP e ⊆ VP s ⊆ VP ⊆ VNP ? e , VP s , VP �⊇ Valiant’s conjectures VP VNP Strassen, Mulmuley-Sohoni (GCT), B¨ urgisser ? Extended conjectures VP s , VP �⊇ VNP Proving e.g. VP e �⊇ VNP using any geometric technique (e.g. shifted partial derivatives or geometric complexity theory) automatically implies VP e �⊇ VNP . We study VP e Recent work on closures of classes: Forbes (2016), Grochow-Mulmuley-Qiao (2016) 9

  26. Statement of main result Main theorem: VP 2 = VP e = = VP 2 VP 3 VP e � ⊆ ⊆ � = VP 2 VP 3 VP e Ben-Or–Cleve Allender–Wang Corollary: strict inclusion VP 2 � VP 2 10

  27. Ben-Or and Cleve construction To prove: VP e ⊆ VP 3 x 1 x 1 x 2 2 3 + × s t · · · × + edge labels: affine linear forms size s formula size poly( s ) width-3 ABP � Brent (1974) depth reduction: size poly( s ) depth O (log s ) formula 11

  28. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  29. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  30. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  31. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  32. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  33. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  34. To prove: VP e ⊆ VP 3 goal base addition addition g x f f + g f s t ∼ multiplication addition addition f f fg fg permute − 1 − 1 ∼ �→ g g 12

  35. Our construction To prove: VP (then VP e ⊆ VP 2 follows) e ⊆ VP 2 13

  36. Our construction To prove: VP (then VP e ⊆ VP 2 follows) e ⊆ VP 2 Recall: computational model s t � − ε − 1 x ε − 1 x ε 2 s - t path products ε → 0 = 2 + x 2 + ε 2 + x 2 − → We need ε → 0 = f + εf 1 + ε 2 f 2 + · · · − → f � �� � O ( ε ) 13

  37. Our construction To prove: VP e ⊆ VP 2 goal base addition addition g f + g x f f ∼ s t + O ( ε ) + O ( ε ) + O ( ε ) + O ( ε ) squaring (idea) addition − f 2 ε − 1 f − ε − 1 f ε 2 ∼ + O ( ε 2 ) + O ( ε 2 ) + O ( ε ) � ( f + g ) 2 − f 2 − g 2 � fg = 1 multiplication 2 14

  38. Our construction To prove: VP e ⊆ VP 2 goal base addition addition g f + g x f f ∼ s t + O ( ε ) + O ( ε ) + O ( ε ) + O ( ε ) squaring (idea) addition − f 2 ε − 1 f − ε − 1 f ε 2 ∼ + O ( ε 2 ) + O ( ε 2 ) + O ( ε ) � ( f + g ) 2 − f 2 − g 2 � fg = 1 multiplication 2 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend