g y branching motion brownian time particle at 0 ir oe x
play

gy Branching Motion Brownian - Time Particle at 0 IR OE : - PowerPoint PPT Presentation

3 { part MMBB.in i course - and :3 : annoihino.IT#sineranxFsti::a.ion4&fLouigi 12th MSJ-SI { / } August 7, 2019 , s f ) } Sarah Julien Addario - Pennington Berestycki Berry gy Branching Motion Brownian - Time


  1. ⑧ 3 { part MMBB.in i course - and :3 : annoihino.IT#sineranxFsti::a.ion4&fLouigi 12’th MSJ-SI { / } August 7, 2019 , s f ) } Sarah Julien Addario - Pennington Berestycki Berry ¥ g§y§

  2. Branching Motion Brownian - Time Particle at 0 IR OE : ( X . X # t ) ) t at Particles Time , HI positions : - , . . . . t at time particles Nt # = . branch - Particles at for particle branch rate ( i 1 to Time - e a . - distributed : Exp ( D is or , - dt ) branches eft.tt dt ) ) PC fixed particle - dt Motion Brownian Particles as more - - another branch Particles . from and in dep move one - . 1¥

  3. Competition i' Nt ) ( Mitt ) Nt ) have ' ( Xi ( t ) I Particles Isis masses • , , with A at particle at particle • x mass causes m a ( with x 14 ) to at rate lose ly M y mass - . if C- ( o , 1) - xl I y Write x - y • (t¥¥t_ total Let near mass x of Xi ft ) Osset ) ancestral ( Xi .tk ) the be Let trajectory • . , • Set NtiH=exp(-/t5(s,X%t(sDds

  4. ⇒ ⇒ ⇒ Competition , environmental B. M Picture For single resources a • : of cost motion ( food ) energetic balance exactly . if compete for Particles resources ° from other distal each . insufficient of Loss competition resources mass o . each ( children Branching doubles Mass NB . parent ) of inherit mass . - ( 2- dtg.EE , .nMifo% Milt ) tdt ) Milt parts • . = analysis { of • Branching Mass splits → work for :

  5. facts Basic = et : TEN , Obj • . nd t : EIN t.at/Nt--n ] Proof n t - dt ) - ( It El Nt + at ] ' EN so , so ¥ E Nt E Nt = Ana . Particledensity • = Ef # Ii : Xictledx } ] . PCX E Nt x ) , HI Ed Mlt x ) : = . = et PCN lat ) Ed x ) . #j = et . expfxyzt )

  6. t.es?Itsso:ca+ionTitexfsx.s5ltixfei.E.i

  7. Results .tt#t=eP/ot5sXi.ds5ltik)=gi?*.q!Y : Front location m ) #*hThhµvµ C. ( tix ) D( t.mi-maxfxso.sft.sc ) > Sm ) dlt.mi-minfxsoidt.sc ) # m ) dlt Dft -9 -0 m ) ° , ,

  8. Results -tePf5Xdf5Hix)=gi*?q! : Front location m ) #*hthhµY C. ( tix ) max Goo :S ( tix ) > Dft m ) , m Sm } minfxso.at m ) x ) dlt = : , , # m ) dlt Dft -9 -0 m ) ° , , 312*30 time to .m* ) that such There Theorem exists m* o > , . for > Dft m ) isnfdlt.IR/ogt+s.m ) all sufficiently large , that such t s a. , .

  9. Results -teP/5df5Hix)=gi*%,! : Front location m ) #*hThhµvµ C. ( tix ) max Goo :S ( tix ) > Dft m ) , m : Ht min Goo Sm } m ) x ) dlt = : . , # m ) dlt Dft → -0 m ) ° , , I R* time > 0 to .m* ) that such There Theorem exists * m so , . for > Dft m ) isnfodlttRlogtts.in ) all sufficiently large , that such t s a. , . finfapltjm ) time E to .m* ) that such There Theorem exists * m so ,

  10. Results -tePf5df5Hix)=gi*§µ! : Front location C. ( tix ) # E*hThhµmµ m ) max Goo :S ( tix ) > Dft m ) , Sm } minfxso.at m ) x ) dlt , , # m ) dlt Dft -9 -0 m ) ° , , I R* time > 0 to .m* ) that such There Theorem exists m* o > , . for > Dft m ) isnfodlt.IR/ogt+s.m ) all sufficiently large , that such t s a. , . finfapltjm ) time E to .m* ) that such There Theorem exists m* o > , V. with s a. me to .m* ) that such There c Theorem = exists m* , . o > , - Dlt - Dft Rt m ) Rt m ) liminf , Iim z , S sup c c - - TV3 TV3 c- → a + → •

  11. Results N.li#t=exp-/ot5sXi.ts5ltik)=ei..x&t,!Y : Particle masses Theorem : , for t large , and all c C- Co , rz ) sit for There IN m* is ne so . inf 't ) E t ; p( inf Tls n Lm , > c) > t s DCI ECS and ' a.) st - n > Msg ! Paused . Theorem for t and sufficiently large , IN he For act any , Milt ) > ¥ ) ft - n Pima .

  12. 5lt¥5dtH:€ ⇒ *?i! ynamiciim . Theorem : . for , for t > times . D > Ost Clg ? TECO C all and there For T so c- IN is n , ' { s In or } x ) Is - Utes Pearl Soltis " , . , s , of Fisher solution - KPP the - local equation the utcs.sc ) where is non - utf ! UH = tout - y ) dy tut Fust x , initial condition with = 5ft , x ) ut fo , x ) . has derived behaviour about Pennington ( In solo precise paper a , for initial with this . ) PDE condition location front compact the

  13. facts Basic Mlt,x)=(zittkexpft-xYzt - Ip log t fit µ ( t t when + OCH Fast x ) = I = : , - Vt o ( t ) Ex ) for : Mlt exp ( Cl toad , Vt x ) Fact x - = - - . . particle density expected exponentially decays Vt I. beyond e . - , before Vt exponentially grows . IntuitionfforsomepurposeDietindepBrownianMotion

  14. Proof idea stabilizes Density I quickly al . - - 9ft , x ) x ) 5ft - idt = SHIN , - Milt ) ) ( Milttdt ) [ Nlt ) is IE A gift + Emilia filthy Mitt ) Mitt ) " ' - . c Branching ttdB Motion - floyd ! ,d" if pcxittdthxl YI ,t¥ filth ± , × . . negligible typically So B. C . - Milt ) - Milt ) ) dt.flt.X.CH ) . . Milt ) ( t - ¥y¥MilttdH . - dt ; SHAHI ) = " =-D ! . . Milt )=dt 9ft x ) Hittin 'd Emilia , .

  15. Proofidea stabilizes b) Density I quickly . at I d-dtfct.sc ) ' set 2 x 't e- I -2 - I x x x . Xiltl ) . . 9ft Elt x ) - . i . ( fct min { 5ft : ly ' 443 ) , x ) ( I , y ) - - > fct { 5ft : ly ' 443 ) , x ) ( I , y ) Max - - - SHH ¥54 x ) e - sets 1 then V-ys.t.ly > 5ft , g) I - e If • , - M Sct ,xl - Hs ¥54 x ) s Etty ) > Mt 't 1 then V-ys.t.ly If • , 0 ( log to ) 1 Density time Density 0<1 in → - 011 ) time D 1 Density Density > I → in ~

  16. ⇒ ⇒ ⇒ Profiled Proof II contradiction by as . . I dltt-dct.tl Elt . xD Write tossed Ct ) so , e I - Dlt . I ) > Dlt ) Dlt ) Ect x ) V. - so x . idea ( d , set ) too big Csl , Sst ) behind spends ( Xi , ( s ) time ( d much , set ) Csi trajectory every small all have particles mass be d ( t ) must smaller , set ) A has ancestral ( X , ( s ) particle Xi ( t ) whose path - 44 has My lil stoups ) then th dish ) f , + ( sik ( a : Hi Leb ( { e ? s .

  17. Proof idea Slowpokes II. miss bs supper . - if almost o ) threshold surely slowpoke Say is Cgctl , t > a , > to ' NCH St Vi 3- to Vt st Xiltlsgltl . . , , Leb ( { : Hi s .to/EgcsY)s.tIzIfdCs)zgcs7V-sc-fY4.t then Whp ) > I 'tq=tg I ! Malti , + Csl ) ds . Sls so ftp.gltl X. , Xi sit V. , i ~ , . unfair > g ( t ) } - t 's # { i :X ; ( t ) Mitt ) E E , e . ; Ctl 3gal } { i :X !# In this case - - . - - - - at time t > 42 si.x.fm?gicftf expats ) 12 NEED make to slowpokes .

  18. threshold Proof idea The slowpoke Ici . - Lemma " glt ) rzt threshold Ct Ost There slowpoke C is is : > - a - . . - o ) " proof ! Let motion Batt ( be Brownian D= > . OH ! P ( Leb { i ) th ) Easy fat ] 1131513 e- se > : : = " ? > th ) e- 0ft Ii ) IP ( Leb { sefo.tl scaling Brownian Bslsl } = : I : iii ) Branching - fitted - l } > th ) El # { i://.lt ) Leb { sefo , t ) : Xi .tk ) > Rs , } > th ) = et - Fst Isl Pll Bt Leb { .tt/Bs-r2s1ae lo se . , Iet .pl/B+.rzt/sl).e-O-ftle4 q ret #ish . Elyse , - PH Bt o - - l ) t PCB There , - t ( t - l ) e here PCB , > v , in stay .

  19. threshold Proof idea The slowpoke Ic ) . - - FL t Lemma " g ( t ) threshold Ct sit There 0 slowpoke C is is " > a - . . . - o ) " proof ! Let motion , t ( be Brownian Blt ) D= > . OH ! I } I ) P ( Leb { 1B sls th ) Easy fat ] e- se > : : = " ? - 0ft > th ) Ii ) scaling Brownian al } I Bsl IP ( Leb { , t ) fo se = e : : iii ) Branching - fitted - l } > th ) El # { i://.lt ) Leb { sefo . t ) : Xi .tk ) > Rs , al } > th ) = et - Fst Isl - Fist l Bt IP ( Leb { lo .tl lbs se : . , Iet .pl/B+-rzt/sl).e-O-ftle4=.et.erl-t.e--Oltll4=erze.e-O-ftll4 - tar - t 's when t ) l ⑤ ( l ; = in conclusion small For obtain enough so c " rt ! , 's } > th ) e ' do Ef # Ii - et - ? Leb { set : Xi Hl Rt i. Hsls :X cs some e > .

  20. Bound Proof idea Upper II. . - " lemma - et in rat ? previous c as Let glt ) . = Lenya . . , t ) s gcs ) -11 softly dls ) t st V large F Then > o as . . Proof : § ! ,Mlt , x ) dx Note > get ) } # { i Xilt ) E - 9% = : 's rat ⇐ emt ⇒ Mlt ,gCt ) ) e . g ( t ) # d ( s ) > gcs ) -11 then f t ) I t If use > x - tis Mitt ) # { i :X ; ( t ) [ > g ( t ) } y ( t x ) s e . t > gtl } si :X its , Rt " + t ) 18 o ( e- = e x . . d CHE gets +1 So am

  21. Proof bound idea Lower II : . - strict threshold feast pole : > his ) Xi .tk ) sst Vt V. 3- htt ) whp set set i . , . . " ? fast poke has E If s t then V 3 shes ) DCs ) mass any s s h ( s ) V. sat fast poke then has , Lt ) ④ DCs If 71/2 any mass " s ) htt ) hold Et O ( t Fact have Can and take = : - . " ' ) . It ) Either set I sit O ( s ¥1 DCs rzs > • - . " - Oct Rt ' 3) k ) Dlt > • or , . stabilizes that density quickly Now use , I ) . It ) to DCs -1040Gt ) from to DCs go 08

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend