brownian motion based versus fractional brownian motion
play

Brownian motion based versus fractional Brownian motion based models - PowerPoint PPT Presentation

Brownian motion based versus fractional Brownian motion based models Jeannette Woerner University of G ottingen - Comparison of models based on -Brownian motion -Brownian motion with iid noise -fractional Brownian motion - Identification


  1. Brownian motion based versus fractional Brownian motion based models Jeannette Woerner University of G¨ ottingen - Comparison of models based on -Brownian motion -Brownian motion with iid noise -fractional Brownian motion - Identification of jump components - Applications to financial and climate data J.H.C. Woerner (Universit¨ at G¨ ottingen) 1 / 40

  2. Motivation J.H.C. Woerner (Universit¨ at G¨ ottingen) 2 / 40

  3. Motivation discrete data X t n , 0 , · · · , X t n , n t n , n = t =fixed, ∆ n , i → 0 as n → ∞ Assume stochastic volatility model � t X t = Y t + σ s dB s + δ Z t 0 � t X t = Y t + σ s dL s + δ Z t 0 � t σ s dB H X t = Y t + s + δ Z t . 0 Aim: Determine which model is suitable for a specific data set. � t 0 σ 2 Estimate s ds . J.H.C. Woerner (Universit¨ at G¨ ottingen) 3 / 40

  4. � t 0 σ 2 How can we infer s ds First we consider Brownian motion based models . Use the concept of quadratic variation , i.e. realized volatility � t i � t p � σ s dB s | 2 σ 2 | Y t i − Y t i − 1 + → s ds 0 t i − 1 i Advantages: - almost model free, only need some Brownian motion based model - very simple to compute - distributional theory is known and Gaussian J.H.C. Woerner (Universit¨ at G¨ ottingen) 4 / 40

  5. Empirical studies versus theoretical results Statistical principle: Use all available data. Problem: For tick-by-tick data realized volatility increases. Possible Explanation: Market microstructure or market friction i.e. effects due to bid-ask bounces, discreteness of prices, liquidity problems, asymmetric information,... J.H.C. Woerner (Universit¨ at G¨ ottingen) 5 / 40

  6. Model with iid noise (cf. Ait-Sahalia, Mykland and Zhang (2006)) � t X t = σ s dB s + ǫ t , 0 where ǫ denotes iid noise. Then the realized volatility is of the order 2∆ − 1 E ( ǫ 2 ) , hence the noise term leads to a bias with dominates the quadratic variation estimate for small ∆. J.H.C. Woerner (Universit¨ at G¨ ottingen) 6 / 40

  7. J.H.C. Woerner (Universit¨ at G¨ ottingen) 7 / 40

  8. J.H.C. Woerner (Universit¨ at G¨ ottingen) 8 / 40

  9. Non-normed and normed power variation � t V n p ( σ s dB s ) = 0  0 : p > 2 � t i � t  p � σ s dB s | p 0 σ 2 | → : p = 2 s ds t i − 1 ∞ : p < 2  i � t � t p ∆ 1 − p / 2 V n σ p p ( σ s dB s ) → µ p s ds , 0 0 as n → ∞ , where µ p = E ( | u | p ) with u ∼ N (0 , 1) and ∆ = t i − t i − 1 . (cf. Barndorff-Nielsen and Shephard (2003)) J.H.C. Woerner (Universit¨ at G¨ ottingen) 9 / 40

  10. Power variation for the model with iid noise Using Minkowski’s inequality with p > 1 we obtain � t i | ǫ t i − ǫ t i − 1 | p ) 1 / p − ( σ s dB s | p ) 1 / p ≤ ( � � � | X t i − X t i − 1 | p ) 1 / p ( | t i − 1 � t i | ǫ t i − ǫ t i − 1 | p ) 1 / p + ( � � σ s dB s | p ) 1 / p ≤ ( | t i − 1 Hence if E | ǫ | p < ∞ for some p > 2, then | X t i − X t i − 1 | p → ∞ , � which does not coincide with empirical findings. J.H.C. Woerner (Universit¨ at G¨ ottingen) 10 / 40

  11. J.H.C. Woerner (Universit¨ at G¨ ottingen) 11 / 40

  12. J.H.C. Woerner (Universit¨ at G¨ ottingen) 12 / 40

  13. Fractional Brownian Motion A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0 , 1), B H = { B H t , t ≥ 0 } is a zero mean Gaussian process with the covariance function s ) = 1 2( t 2 H + s 2 H − | t − s | 2 H ) , E ( B H t B H s , t ≥ 0 . The fBm is a self-similar process, that is, for any constant a > 0, the processes { a − H B H at , t ≥ 0 } and { B H t , t ≥ 0 } have the same distribution. 2 , B H coincides with the classical Brownian motion. For For H = 1 H ∈ ( 1 2 , 1) the process possesses long memory and for H ∈ (0 , 1 2 ) the behaviour is chaotic. J.H.C. Woerner (Universit¨ at G¨ ottingen) 13 / 40

  14. Non-normed Power Variation for fractional Brownian motion  0 : p > 1 / H � t i  � t p � 0 σ 1 / H σ s dB H s | p | → , µ 1 / H ds : p = 1 / H s t i − 1 ∞ : p < 1 / H  i The integral is a pathwise Riemann-Stieltjes integral and we need that 1 σ is a stochastic process with paths of finite q -variation, q < 1 − H . Idea: Empirical behaviour of tick-by-tick data may also be explained by fBB with H < 0 . 5. J.H.C. Woerner (Universit¨ at G¨ ottingen) 14 / 40

  15. Consistency joint with J.M. Corcuera and D. Nualart (2006) Theorem Suppose that σ t is a stochastic process with finite q-variation, where 1 q < 1 − H . Set � t σ s dB H Z t = s . 0 Then, � T P ∆ 1 − pH V n | σ s | p ds , p ( Z ) − → µ p 0 as n → ∞ . J.H.C. Woerner (Universit¨ at G¨ ottingen) 15 / 40

  16. Estimate for quadratic variation We can explain the empirical findings by considering | X t i − X t i − 1 | 2 = ∆ 2 H − 1 (∆ 1 − 2 H � � | X t i − X t i − 1 | 2 ) , i i where � t p ∆ 1 − 2 H � | X t i − X t i − 1 | 2 σ 2 → s ds 0 i and ∆ 2 H − 1 → ∞ for H < 0 . 5. J.H.C. Woerner (Universit¨ at G¨ ottingen) 16 / 40

  17. More details: We look at the test statistics: � [ nT ] − 1 ( X i +1 n − X i n )( X i n − X i − 1 n ) i =1 S = � [ nT ] n ) 2 i =1 ( X i n − X i − 1 model based on Brownian motion: 0 model based on Brownian motion with iid noise: -1/2 2 (2 2 H − 2) 1 model based on fractional Brownian motion: confidence interval:  � �  � [ nt ] � [ nt ] n | 4 n | 4 � i =1 | X i n − X i − 1 � i =1 | X i n − X i − 1 � �  − c γ � 2 , c γ  ,   � � � 2 � �� [ nt ] � �� [ nt ] n | 2 n | 2 3 i =1 | X i n − X i − 1 3 i =1 | X i n − X i − 1 where c γ denotes the γ -quantile of a N (0 , 1)-distributed random variable. J.H.C. Woerner (Universit¨ at G¨ ottingen) 17 / 40

  18. Daimler Chrysler, January 3rd-31st 2005, 1% level # transactions mean distance S l. bound BM 66140 7s -0.1061 -0.0796 33070 14s -0.1606 -0.1094 22046 21s -0.1574 -0.1244 16535 28s -0.1192 -0.1295 13228 35s -0.1156 -0.1367 # transactions mean distance R l. bound BM 66140 7s -0.424 -0.0357 33070 14s -0.4411 -0.0405 22046 21s -0.3837 -0.0622 16535 28s -0.2744 -0.0467 13228 35s -0.2532 -0.0518 11023 42s -0.2202 -0.0597 9448 49s -0.1749 -0.0601 8267 56s -0.1117 -0.0675 7348 63s -0.1336 -0.0623 6614 70s -0.0972 -0.0702 J.H.C. Woerner (Universit¨ at G¨ ottingen) 18 / 40

  19. Model with market microstructure Daimler Chrysler, January 3rd-31st 2005, 1% level # transactions mean distance S u. bound iid 66140 7s -0.1061 -0.3621 33070 14s -0.1606 -0.3106 22046 21s -0.1574 -0.2845 16535 28s -0.1192 -0.2758 13228 35s -0.1156 -0.2632 11023 42s -0.0994 -0.2413 9448 49s -0.0827 -0.2354 8267 56s -0.0542 -0.2472 7348 63s -0.0608 -0.2134 6614 70s -0.0487 -0.2285 J.H.C. Woerner (Universit¨ at G¨ ottingen) 19 / 40

  20. What are the effects of these results? Risk induced by model misspecification We look at Daimler Chrysler data of 12.1.2005: Assuming a model based on Brownian motion : � T 0 σ 2 s ds = 0 . 000309 Assuming a model based on fractional Brownian motion with H = 0 . 4: � T 0 σ 2 s ds = 0 . 000059 J.H.C. Woerner (Universit¨ at G¨ ottingen) 20 / 40

  21. J.H.C. Woerner (Universit¨ at G¨ ottingen) 21 / 40

  22. What are the effects of these results? Risk induced by model misspecification We look at index data from Singapore: Assuming a model based on Brownian motion : � T 0 σ 2 s ds = 0 . 319 Assuming a model based on fractional Brownian motion with H = 0 . 6: � T 0 σ 2 s ds = 1 . 595 J.H.C. Woerner (Universit¨ at G¨ ottingen) 22 / 40

  23. Do we have an additional jump component? A measure for the activity of the jump component of a L´ evy process is the Blumenthal-Getoor index β , � (1 ∧ | x | δ ) ν ( dx ) < ∞} . β = inf { δ > 0 : This index ensures, that for p > β the sum of the p -th power of jumps will be finite. J.H.C. Woerner (Universit¨ at G¨ ottingen) 23 / 40

  24. Comparison of non-normed power variation  0 : p > 2 � t i � t  p � σ s dB s | p 0 σ 2 | → s ds : p = 2 t i − 1 ∞ : p < 2  i and the case for the L´ evy model � t i � σ s dL s | p | t i − 1 i � u u − σ s dL s | p : 0 < u ≤ t ) � � ( | : p > β p → ∞ : p < β under appropriate regularity conditions, where β denotes the Blumenthal-Getoor index of L . J.H.C. Woerner (Universit¨ at G¨ ottingen) 24 / 40

  25. Non-normed Power Variation for fractional Brownian motion 0 : p > 1 / H  � t i  � t p � σ s dB H s | p 0 σ 1 / H | → , µ 1 / H : p = 1 / H ds s t i − 1  ∞ : p < 1 / H i where H > 1 / 2. The integral is a pathwise Riemann-Stieltjes integral and we need that σ is a stochastic process with paths of finite q -variation, 1 q < 1 − H . Hence one over the Hurst exponent plays a similar role as the Blumenthal-Getoor index . J.H.C. Woerner (Universit¨ at G¨ ottingen) 25 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend