brownian motion
play

Brownian motion 18.S995 - L03 & 04 Typical length scales - PowerPoint PPT Presentation

Brownian motion 18.S995 - L03 & 04 Typical length scales http://www2.estrellamountain.edu/faculty/farabee/BIOBK/biobookcell2.html dunkel@math.mit.edu Brownian motion Brownian motion Jan Ingen-Housz (1730-1799) 1784/1785:


  1. Brownian motion 18.S995 - L03 & 04

  2. Typical length scales http://www2.estrellamountain.edu/faculty/farabee/BIOBK/biobookcell2.html dunkel@math.mit.edu

  3. Brownian motion

  4. “Brownian” motion Jan Ingen-Housz (1730-1799) 1784/1785: http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

  5. Robert Brown (1773-1858) Linnean society, London irregular motion of pollen in fluid 1827: irregul¨ are Eigenbewegung von Pollen in Fl¨ ussigkeit http://www.brianjford.com/wbbrownc.htm

  6. !"#$%&'()*+,-#./0102/3//4 5"#67,8&(7,#./0932/3114 :"#$;<*%='<>8?7# ./09@2/3/94 !"#$%&' ((()*+&,-&)%".),# !"#$%&' ! ((()*+&,-&)%".),# !"#$%&' (/0/1&2/,)"$- !"#$%&' ! (/0/1&2/,)"$- !"#$%&' (/0/1&2/,)"$- !"#$%&' ! (/0/1&2/,)"$- RT RT 1 2 32 mc D ! ! D ! D D "# " 6 a C N 6 k P "$ 243 R 5,,"#A'E8"# $" C#91G#./3DG4 A'7*"#:+B"# ! C#90/#./3D14 5,,"#A'E8"# "# C#1F3#./3D14

  7. Nobel prize Jean Baptiste Perrin (1870-1942, Nobelpreis 1926) � colloidal particles of radius 0.53 µ m � successive positions every 30 seconds joined by straight line segments eculaire , Annales de chimie et de Mouvement brownien et r´ ealit´ e mol´ � mesh size is 3.2 µ m physique VIII 18, 5-114 (1909) Les Atomes , Paris, Alcan (1913) experimental evidence for Experimenteller Nachweis der atomistischen Struktur der Materie atomistic structure of matter

  8. Norbert Wiener (1894-1864) MIT

  9. Relevance in biology • intracellular transport • intercellular transport • microorganisms must beat BM to achieve directed locomotion • tracer diffusion = important experimental “tool” • generalized BMs (polymers, membranes, etc.) dunkel@math.mit.edu

  10. Polymers & filaments (D=1) Dogic Lab, Brandeis Physical parameters (e.g. bending rigidity) from fluctuation analysis Drosophila oocyte Goldstein lab, PNAS 2012 dunkel@math.mit.edu

  11. Brownian tracer particles in a bacterial suspension Bacillus subtilis Tracer colloids PRL 2013

  12. http://web.mit.edu/mbuehler/www/research/f103.jpg

  13. Basic idea Split dynamics into • deterministic part (drift) • random part (diffusion)

  14. Typical problems http://www.pnas.org/content/104/41/16098/F1.expansion.html Determine D • noise ‘structure’ • transport coefficients • first passage (escape) times

  15. Probability space [0 , 1] A B P [ ∅ ] = 0

  16. Expectation values of discrete random variables

  17. Expectation values of continuous random variables

  18. Random walk model N X X N = x 0 + ` S i i =1

  19. 1.1 Random walks 1.1.1 Unbiased random walk (RW) Consider the one-dimensional unbiased RW (fixed initial position X 0 = x 0 , N steps of length ` ) N X X N = x 0 + ` S i (1.1) i =1 where S i ∈ {± 1 } are iid. random variables (RVs) with P [ S i = ± 1] = 1 / 2. Noting that 1 − 1 · 1 2 + 1 · 1 E [ S i ] = 2 = 0 , (1.2)  ( − 1) 2 · 1 2 + (1) 2 · 1 � � ij E [ S 2 E [ S i S j ] = i ] = � ij = � ij , (1.3) 2 we find for the first moment of the RW N X E [ X N ] = x 0 + ` E [ S i ] = x 0 (1.4) i =1

  20. 1.1 Random walks 1.1.1 Unbiased random walk (RW) Consider the one-dimensional unbiased RW (fixed initial position X 0 = x 0 , N steps of length ` ) N X X N = x 0 + ` S i (1.1) i =1 where S i ∈ {± 1 } are iid. random variables (RVs) with P [ S i = ± 1] = 1 / 2. Noting that 1 − 1 · 1 2 + 1 · 1 E [ S i ] = 2 = 0 , (1.2)  ( − 1) 2 · 1 2 + (1) 2 · 1 � � ij E [ S 2 E [ S i S j ] = i ] = � ij = � ij , (1.3) 2 we find for the first moment of the RW N X E [ X N ] = x 0 + ` E [ S i ] = x 0 (1.4) i =1

  21. 1.1 Random walks 1.1.1 Unbiased random walk (RW) Consider the one-dimensional unbiased RW (fixed initial position X 0 = x 0 , N steps of length ` ) N X X N = x 0 + ` S i (1.1) i =1 where S i ∈ {± 1 } are iid. random variables (RVs) with P [ S i = ± 1] = 1 / 2. Noting that 1 − 1 · 1 2 + 1 · 1 E [ S i ] = 2 = 0 , (1.2)  ( − 1) 2 · 1 2 + (1) 2 · 1 � � ij E [ S 2 E [ S i S j ] = i ] = � ij = � ij , (1.3) 2 we find for the first moment of the RW N X E [ X N ] = x 0 + ` E [ S i ] = x 0 (1.4) i =1

  22. Second moment (uncentered) N X E [ X 2 S i ) 2 ] N ] = E [( x 0 + ` i =1 N N N X X X E [ x 2 S i + ` 2 = 0 + 2 x 0 ` S i S j ] i =1 i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = E [ S i S j ] i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = � ij i =1 j =1 x 2 0 + ` 2 N. = (1.5)

  23. Second moment (uncentered) N X E [ X 2 S i ) 2 ] N ] = E [( x 0 + ` i =1 N N N X X X E [ x 2 S i + ` 2 = 0 + 2 x 0 ` S i S j ] i =1 i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = E [ S i S j ] i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = � ij i =1 j =1 x 2 0 + ` 2 N. = (1.5)

  24. Second moment (uncentered) N X E [ X 2 S i ) 2 ] N ] = E [( x 0 + ` i =1 N N N X X X E [ x 2 S i + ` 2 = 0 + 2 x 0 ` S i S j ] i =1 i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = E [ S i S j ] i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = � ij i =1 j =1 x 2 0 + ` 2 N. = (1.5)

  25. Second moment (uncentered) N X E [ X 2 S i ) 2 ] N ] = E [( x 0 + ` i =1 N N N X X X E [ x 2 S i + ` 2 = 0 + 2 x 0 ` S i S j ] i =1 i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = E [ S i S j ] i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = � ij i =1 j =1 x 2 0 + ` 2 N. = (1.5)

  26. Second moment (uncentered) N X E [ X 2 S i ) 2 ] N ] = E [( x 0 + ` i =1 N N N X X X E [ x 2 S i + ` 2 = 0 + 2 x 0 ` S i S j ] i =1 i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = E [ S i S j ] i =1 j =1 N N X X x 2 0 + 2 x 0 · 0 + ` 2 = � ij i =1 j =1 x 2 0 + ` 2 N. = (1.5)

  27. Continuum limit N X X N = x 0 + ` S i i =1 Let

  28. Continuum limit ◆ N ✓ N ✓ 1 ◆ P ( N, K ) = N − K 2 2 ◆ N ✓ 1 N ! = (( N + K ) / 2)! (( N − K ) / 2)! . (1.8) 2 The associated probability density function (PDF) can be found by defining p ( t, x ) := P ( N, K ) = P ( t/ ⌧ , x/ ` ) (1.9) 2 ` 2 ` and considering limit ⌧ , ` → 0 such that D := ` 2 2 ⌧ = const, (1.10)

  29. Continuum limit (pset1) yielding the Gaussian r � x 2 1 ✓ ◆ p ( t, x ) ' 4 π Dt exp (1.11) 4 Dt Eq. (1.11) is the fundamental solution to the di ff usion equation, ∂ t p t = D ∂ xx p, (1.12) where ∂ t , ∂ x , ∂ xx , . . . denote partial derivatives. The mean square displacement of the con- tinuous process described by Eq. (1.11) is Z dx x 2 p ( t, x ) = 2 Dt, E [ X ( t ) 2 ] = (1.13) in agreement with Eq. (1.7).

  30. One often classifies di ff usion processes by the (asymptotic) power-law growth Remark of the mean square displacement, E [( X ( t ) � X (0)) 2 ] ⇠ t µ . (1.14) • µ = 0 : Static process with no movement. • 0 < µ < 1 : Sub-di ff usion, arises typically when waiting times between subsequent jumps can be long and/or in the presence of a su ffi ciently large number of obstacles (e.g. slow di ff usion of molecules in crowded cells). • µ = 1 : Normal di ff usion, corresponds to the regime governed by the standard Central Limit Theorem (CLT). • 1 < µ < 2 : Super-di ff usion, occurs when step-lengths are drawn from distributions with infinite variance (L´ evy walks; considered as models of bird or insect movements). • µ = 2 : Ballistic propagation (deterministic wave-like process).

  31. non-Brownian Brownian motion Levy-flight

  32. 1.1.2 Biased random walk (BRW) Consider a one-dimensional hopping process on a discrete lattice (spacing ` ), defined such that during a time-step ⌧ a particle at position X ( t ) = ` j 2 ` Z can either (i) jump a fixed distance ` to the left with probability � , or (ii) jump a fixed distance ` to the right with probability ⇢ , or (iii) remain at its position x with probability (1 � � � ⇢ ). Assuming that the process is Markovian (does not depend on the past), the evolution of the associated probability vector P ( t ) = ( P ( t, x )) = ( P j ( t )), where x = ` j , is governed by the master equation P ( t + ⌧ , x ) = (1 � � � ⇢ ) P ( t, x ) + ⇢ P ( t, x � ` ) + � P ( t, x + ` ) . (1.15)

  33. Master equations P ( t + ⌧ , x ) = (1 � � � ⇢ ) P ( t, x ) + ⇢ P ( t, x � ` ) + � P ( t, x + ` ) . (1.15) Technically, ⇢ , � and (1 � � � ⇢ ) are the non-zero-elements of the corresponding transition matrix W = ( W ij ) with W ij > 0 that governs the evolution of the column probability vector P ( t ) = ( P j ( t )) = ( P ( t, y )) by P i ( t + ⌧ ) = W ij P j ( t ) (1.16a) or, more generally, for n steps P ( t + n ⌧ ) = W n P ( t ) . (1.16b) The stationary solutions are the eigenvectors of W with eigenvalue 1. To preserve normal- ization, one requires P i W ij = 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend