variations and brownian motion with drift
play

Variations and Brownian Motion with drift Bo Friis Nielsen 1 1 DTU - PowerPoint PPT Presentation

Variations and Brownian Motion with drift Bo Friis Nielsen 1 1 DTU Informatics 02407 Stochastic Processes 12, November 27 2018 Bo Friis Nielsen Variations and Brownian Motion with drift Brownian Motion Today: Various variations of Brownian


  1. Variations and Brownian Motion with drift Bo Friis Nielsen 1 1 DTU Informatics 02407 Stochastic Processes 12, November 27 2018 Bo Friis Nielsen Variations and Brownian Motion with drift

  2. Brownian Motion Today: ◮ Various variations of Brownian motion, reflected, absorbed, Brownian bridge, with drift, geometric Next week ◮ General course overview Bo Friis Nielsen Variations and Brownian Motion with drift

  3. Reflected Brownian Motion � B ( t ) if B ( t ) ≥ 0 R ( t ) = − B ( t ) if B ( t ) < 0 � E ( R ( t )) = 2 t /π � 1 − 2 � V ar ( R ( t )) = t π � y P { R ( t ) ≤ y | R ( 0 ) = x } = φ t ( z − x ) d x − y p ( y , t | x ) = φ t ( y − x ) + φ t ( y + x ) Bo Friis Nielsen Variations and Brownian Motion with drift

  4. Absorbed Brownian Motion The movement ceases once the level 0 is reached. G t ( x , y ) = P { A ( t ) > y | A ( 0 ) = x } = P { B ( t ) > y , min { B ( u ) > 0 ; 0 ≤ u ≤ t | B ( 0 ) = x } We first observe P { B ( t ) > y | B ( 0 ) = x } = G t ( x , y ) + P { B ( t ) > y , min { B ( u ) ≤ 0 ; 0 ≤ u ≤ t }| B ( 0 ) = x } Due to reflection the latter term is also P { B ( t ) > y , min { B ( u ) ≤ 0 ; 0 ≤ u ≤ t }| B ( 0 ) = x } = P { B ( t ) < − y , min { B ( u ) ≤ 0 ; 0 ≤ u ≤ t }| B ( 0 ) = x } = P { B ( t ) < − y | B ( 0 ) = x } Bo Friis Nielsen Variations and Brownian Motion with drift

  5. Absorbed Brownian Motion Summarizing we get P { A ( t ) > y | A ( 0 ) = x } = G t ( x , y ) = 1 − Φ t ( y − x ) − Φ t ( − y − x ) = Φ t ( y + x ) − Φ t ( y − x ) We have already seen that P { A ( t ) = 0 | A ( 0 ) = x } = 2 [ 1 − Φ t ( x )] Bo Friis Nielsen Variations and Brownian Motion with drift

  6. Brownian Bridge Distribution of B ( t ); 0 ≤ t ≤ 1 conditioned on { B ( 0 ) = 0 , B ( 1 ) = 0 } . X = B ( t ) and B ( 1 ) − B ( t ) are indepedent normal variables. Y = B ( 1 ) − B ( t ) + B ( t ) and X are bivariate normal. V ar ( x ) = t √ √ C ov ( X , Y ) = E ( B ( t ) B ( t ) + B ( t )( 1 − B ( t ))) = t = ρ t 1 E ( X ) + ρσ X E ( X | Y = y = 0 ) = · ( y − E ( Y )) = 0 σ Y t ( 1 − ρ 2 ) = t ( 1 − t ) V ar ( X | Y ) = E { B ( t ) | B ( 0 ) = 0 , B ( 1 ) = 0 } = 0 V ar { B ( t ) | B ( 0 ) = 0 , B ( 1 ) = 0 } = t ( 1 − t ) C ov { B ( s ) , B ( t ) | B ( 0 ) = 0 , B ( 1 ) = 0 } = s ( 1 − t ) The process is Gaussian Bo Friis Nielsen Variations and Brownian Motion with drift

  7. Brownian Motion with Drift X ( t ) = µ t + σ B ( t ) ◮ A continuous sample path process with independent increments ◮ X ( t + s ) − X ( s ) ∼ N � µ t , σ 2 t � � y − µ t − x � P { X ( t ) ≤ y | X ( 0 ) = x } = Φ √ σ t Bo Friis Nielsen Variations and Brownian Motion with drift

  8. Absorption Probabilities T ab = min { t ≥ 0 ; X ( t ) = a or X ( t ) = b } u ( x ) = P { X ( T ab ) = b | X ( 0 ) = x } We assume that absorption has not occurred at (∆ t , x + ∆ X ) u ( x ) = E ( u ( x + ∆ X )) Taylor series expansion of right hand side � (∆ X ) 2 �� u ( x ) + u ′ ( x )∆( X ) + 1 2 u ”( x )(∆ X ) 2 + o � u ( x ) = E u ( x ) + u ′ ( x ) E [∆( X )] + 1 � (∆ X ) 2 � � � (∆ X ) 2 �� = 2 u ”( x ) E + E o � (∆ X ) 2 � = σ 2 ∆ t + ( µ ∆ t ) 2 E [∆( X )] = µ ∆ t , E µ u ′ ( x ) + 1 u ( x ) = Ae − 2 µ x 2 σ 2 u ”( x ) = 0 , σ 2 + B Bo Friis Nielsen Variations and Brownian Motion with drift

  9. Absorption probabilities Theorem 8.1 µ u ′ ( x ) + 1 u ( x ) = Ae − 2 µ x σ 2 + B 2 σ 2 u ”( x ) = 0 , u ( x ) = Ae − 2 µ x σ 2 + B , u ( a ) = 0 , u ( b ) = 1 u ( x ) = e − 2 µ x σ 2 − e − 2 µ a σ 2 e − 2 µ b σ 2 − e − 2 µ a σ 2 Bo Friis Nielsen Variations and Brownian Motion with drift

  10. Mean Time to Absorption T ab = min { t ≥ 0 ; X ( t ) = a or X ( t ) = b } v ( x ) = E { T ab | X ( 0 ) = x } v ( x ) = ∆ t + E ( v ( x + ∆ X )) 1 + µ v ′ ( x ) + 1 2 σ 2 v ”( x ) = 0 v ( a ) = v ( b ) = 0 v ( x ) = 1 µ [ u ( x )( b − a ) − ( x − a )] Bo Friis Nielsen Variations and Brownian Motion with drift

  11. Maximum of Brownian Motion with Negative Drift We assume µ < 0, using Theorem 8.2.1 u ( x ) = e − 2 µ x σ 2 − e − 2 µ a σ 2 e − 2 µ b σ 2 − e − 2 µ a σ 2 we get e − 2 µ · 0 σ 2 − e − 2 µ a σ 2 = e − 2 | µ | σ 2 y P { max 0 ≤ t X ( t ) > y } = lim e − 2 µ y σ 2 − e − 2 µ a a →−∞ σ 2 Bo Friis Nielsen Variations and Brownian Motion with drift

  12. Geometric Brownian Motion Z ( t ) = ze ( α − 1 2 σ 2 ) t + σ B ( t ) ( Z ( 0 ) = z ) � α − 1 � 2 σ 2 , σ 2 X ( t ) = log ( z ) + log ( Z ( t ) , X ( t ) ∼ N 2 σ 2 ) t = ze α t E ( Z ( t )) = ze ( α − 1 2 σ 2 ) t E � e σ B ( t ) � = ze ( α − 1 2 σ 2 ) t e ( 1 2 σ 2 we have that Z ( t ) → 0 with probability 1 For α < 1 e σ 2 t − 1 V ar ( Z ( t )) = z 2 e 2 α t � � Bo Friis Nielsen Variations and Brownian Motion with drift

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend