obliquely reflected brownian motion in fractal domains
play

OBLIQUELY REFLECTED BROWNIAN MOTION IN FRACTAL DOMAINS Krzysztof - PowerPoint PPT Presentation

OBLIQUELY REFLECTED BROWNIAN MOTION IN FRACTAL DOMAINS Krzysztof Burdzy University of Washington Krzysztof Burdzy Reflected Brownian motion 1 / 28 Reference KB, Zhenqing Chen, Donald Marshall, Kavita Ramanan Obliquely reflected Brownian


  1. OBLIQUELY REFLECTED BROWNIAN MOTION IN FRACTAL DOMAINS Krzysztof Burdzy University of Washington Krzysztof Burdzy Reflected Brownian motion 1 / 28

  2. Reference KB, Zhenqing Chen, Donald Marshall, Kavita Ramanan “Obliquely reflected Brownian motion in non-smooth planar domains” Ann. Probab. 45 (2017) 2971–3037 Krzysztof Burdzy Reflected Brownian motion 2 / 28

  3. Obliquely reflected Brownian motion Krzysztof Burdzy Reflected Brownian motion 3 / 28

  4. Obliquely reflected Brownian motion in fractal domains Krzysztof Burdzy Reflected Brownian motion 4 / 28

  5. Technical challenges Krzysztof Burdzy Reflected Brownian motion 5 / 28

  6. Technical challenges Krzysztof Burdzy Reflected Brownian motion 5 / 28

  7. Obliquely reflected Brownian motion – technical remarks Classical Dirichlet form approach to Markov processes is limited to symmetric processes. Obliquely reflected Brownian motion is not symmetric. Krzysztof Burdzy Reflected Brownian motion 6 / 28

  8. Obliquely reflected Brownian motion – technical remarks Classical Dirichlet form approach to Markov processes is limited to symmetric processes. Obliquely reflected Brownian motion is not symmetric. Non-symmetric Dirichlet form approach to obliquely reflected Brownian motion had limited success (Kim, Kim and Yun (1998) and Duarte (2012)). Krzysztof Burdzy Reflected Brownian motion 6 / 28

  9. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D Krzysztof Burdzy Reflected Brownian motion 7 / 28

  10. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D THEOREM (B and Marshall; 1993) For an arbitrary measurable θ , obliquely reflected Brownian motion X in D with the oblique angle of reflection θ exists. Krzysztof Burdzy Reflected Brownian motion 7 / 28

  11. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D THEOREM (B and Marshall; 1993) For an arbitrary measurable θ , obliquely reflected Brownian motion X in D with the oblique angle of reflection θ exists. Lions and Sznitman (1984), Harrison, Landau and Shepp (1985), Varadhan and Williams (1985) Krzysztof Burdzy Reflected Brownian motion 7 / 28

  12. Jumps on the boundary Krzysztof Burdzy Reflected Brownian motion 8 / 28

  13. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D Krzysztof Burdzy Reflected Brownian motion 9 / 28

  14. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D θ ↔ ( h , µ ) Krzysztof Burdzy Reflected Brownian motion 9 / 28

  15. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D θ ↔ ( h , µ ) h ( x ) dx – stationary distribution Krzysztof Burdzy Reflected Brownian motion 9 / 28

  16. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D θ ↔ ( h , µ ) h ( x ) dx – stationary distribution µ – rate of rotation Krzysztof Burdzy Reflected Brownian motion 9 / 28

  17. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 , θ ↔ ( h , µ ) THEOREM (B, Chen, Marshall, Ramanan; 2017) h = e − i ( θ + i � θ ) π cos θ (0) + i tan θ (0) h + i � , and µ = tan θ (0) , π ��� � � θ + i � θ = i log( h + i � 1 + µ 2 h − i µ/π ) − i log /π . Krzysztof Burdzy Reflected Brownian motion 10 / 28

  18. Parametrization of obliquely reflected Brownian motions D – unit disc in R 2 , θ ↔ ( h , µ ) THEOREM (B, Chen, Marshall, Ramanan; 2017) h = e − i ( θ + i � θ ) π cos θ (0) + i tan θ (0) h + i � , and µ = tan θ (0) , π ��� � � θ + i � θ = i log( h + i � 1 + µ 2 h − i µ/π ) − i log /π . Harrison, Landau and Shepp (1985): smooth θ Krzysztof Burdzy Reflected Brownian motion 10 / 28

  19. Rate of rotation of obliquely reflected Brownian motion THEOREM (B, Chen, Marshall, Ramanan; 2017) (i) lim t →∞ arg X t / t = µ ? Krzysztof Burdzy Reflected Brownian motion 11 / 28

  20. Rate of rotation of obliquely reflected Brownian motion THEOREM (B, Chen, Marshall, Ramanan; 2017) (i) lim t →∞ arg X t / t = µ ? No. Krzysztof Burdzy Reflected Brownian motion 11 / 28

  21. Rate of rotation of obliquely reflected Brownian motion THEOREM (B, Chen, Marshall, Ramanan; 2017) (i) lim t →∞ arg X t / t = µ ? No. (ii) Assume that sup x | θ ( x ) | < π/ 2. Then, a.s., X is continuous and, therefore, arg X t is well defined for t > 0. The distributions of 1 t arg X t − µ converge to the Cauchy distribution when t → ∞ . Krzysztof Burdzy Reflected Brownian motion 11 / 28

  22. Rate of rotation of obliquely reflected Brownian motion THEOREM (B, Chen, Marshall, Ramanan; 2017) (i) lim t →∞ arg X t / t = µ ? No. (ii) Assume that sup x | θ ( x ) | < π/ 2. Then, a.s., X is continuous and, therefore, arg X t is well defined for t > 0. The distributions of 1 t arg X t − µ converge to the Cauchy distribution when t → ∞ . (iii) Let arg ∗ X t be arg X t “without large excursions from ∂ D .” Then, a.s., t →∞ arg ∗ X t / t = µ. lim Krzysztof Burdzy Reflected Brownian motion 11 / 28

  23. Obliquely reflected Brownian motion in fractal domains D – simply connected bounded open set in R 2 THEOREM (B, Chen, Marshall, Ramanan; 2017) For every positive harmonic function h in D with L 1 norm equal to 1 and every real number µ , there exists a (unique in distribution) obliquely reflected Brownian motion in D with the stationary distribution h ( x ) dx and rate of rotation µ . Krzysztof Burdzy Reflected Brownian motion 12 / 28

  24. Rotation rate field Let D be the unit disc and µ ( z ) be the rate of rotation around z ∈ D . In other words, the distributions of 1 t arg( X t − z ) − µ ( z ) converge to the Cauchy distribution when t → ∞ . Krzysztof Burdzy Reflected Brownian motion 13 / 28

  25. Rotation rate field Let D be the unit disc and µ ( z ) be the rate of rotation around z ∈ D . In other words, the distributions of 1 t arg( X t − z ) − µ ( z ) converge to the Cauchy distribution when t → ∞ . THEOREM (B, Chen, Marshall, Ramanan; 2017) The function µ ( z ) is harmonic in D . Krzysztof Burdzy Reflected Brownian motion 13 / 28

  26. Rotation rate field D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D h ( x ) dx – stationary distribution µ ( z ) – rate of rotation around z Krzysztof Burdzy Reflected Brownian motion 14 / 28

  27. Rotation rate field D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D h ( x ) dx – stationary distribution µ ( z ) – rate of rotation around z θ ↔ ( h , µ (0)) ↔ { µ ( z ) } z ∈ D Arrows indicate one to one mappings. Are the mappings surjective? Krzysztof Burdzy Reflected Brownian motion 14 / 28

  28. Rotation rate field D – unit disc in R 2 θ ( x ) – angle of reflection at x ∈ ∂ D h ( x ) dx – stationary distribution µ ( z ) – rate of rotation around z θ ↔ ( h , µ (0)) ↔ { µ ( z ) } z ∈ D Arrows indicate one to one mappings. Are the mappings surjective? In the first case, yes. Krzysztof Burdzy Reflected Brownian motion 14 / 28

  29. Rotation rate field – limitations Suppose that φ ( z ) is harmonic in the unit disc D . φ ( z ) does not have to be positive. Krzysztof Burdzy Reflected Brownian motion 15 / 28

  30. Rotation rate field – limitations Suppose that φ ( z ) is harmonic in the unit disc D . φ ( z ) does not have to be positive. Set K − = inf z ∈ D � φ ( z ) and K + = sup z ∈ D � φ ( z ). Krzysztof Burdzy Reflected Brownian motion 15 / 28

  31. Rotation rate field – limitations Suppose that φ ( z ) is harmonic in the unit disc D . φ ( z ) does not have to be positive. Set K − = inf z ∈ D � φ ( z ) and K + = sup z ∈ D � φ ( z ). If a , b ∈ R with − 1 / | K + | ≤ b ≤ 1 / | K − | , then the function µ ( z ) = a + b φ ( z ) is the rotation field of an obliquely reflected Brownian motion in D . Krzysztof Burdzy Reflected Brownian motion 15 / 28

  32. Rotation rate field – limitations Suppose that φ ( z ) is harmonic in the unit disc D . φ ( z ) does not have to be positive. Set K − = inf z ∈ D � φ ( z ) and K + = sup z ∈ D � φ ( z ). If a , b ∈ R with − 1 / | K + | ≤ b ≤ 1 / | K − | , then the function µ ( z ) = a + b φ ( z ) is the rotation field of an obliquely reflected Brownian motion in D . For b > 1 / | K − | and b < − 1 / | K + | , the function µ ( z ) = a + b φ ( z ) does not represent the rotation field of an obliquely reflected Brownian motion in D . Krzysztof Burdzy Reflected Brownian motion 15 / 28

  33. Obliquely reflected Brownian motion in fractal domains Krzysztof Burdzy Reflected Brownian motion 16 / 28

  34. Smooth domain approximation D ⊂ R 2 – open bounded simply connected set D k ⊂ D k +1 , � k D k = D , D k have smooth boundaries Krzysztof Burdzy Reflected Brownian motion 17 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend