maximal angle of a system of self repelling particles on
play

Maximal angle of a system of self-repelling particles on the circle - PowerPoint PPT Presentation

Maximal angle of a system of self-repelling particles on the circle Antoine Dahlqvist Technische Universitt Berlin Berlin-Padova workshop October 25, 2014 1 / 16 Dyson Brownian motion on the circle 1 A random matrix model, a diffusion on U


  1. Maximal angle of a system of self-repelling particles on the circle Antoine Dahlqvist Technische Universität Berlin Berlin-Padova workshop October 25, 2014 1 / 16

  2. Dyson Brownian motion on the circle 1 A random matrix model, a diffusion on U ( N ) 2 Moment method 3 Embed and compare 4 2 / 16

  3. Dyson Brownian motion on the circle N ∈ N ∗ , ω t , 1 , . . . , ω t , N ∈ U , processes satisfying 1 i ω p , t dB t , p + 1 √ N ( ∇ log V ( ω t )) p dt , 1 ≤ p ≤ N , d ω t , p = (Unitary Dyson) N � | z p − z q | 2 , V ( z 1 , . . . , z N ) = p < q B t , 1 , . . . , B t , N N independant standard real Brownian motions. Proposition The SDE (Unitary Dyson) admits a unique strong solution ( ω t ) t ≥ 0 such that ω 0 , 1 = . . . = ω 0 , N = 1 and a.s. for all t > 0 , V ( ω t ) � = 0 . 3 / 16

  4. Dyson Brownian motion on the circle F IGURE : − i log ( ω x / 20 ) 0 ≤ x ≤ 100 � N Questions : if µ t , N = 1 p = 1 δ ω p , µ t , N → µ t , with supp ( µ t ) = exp i [ − θ t , θ t ]? For N all t >0, a.s., ω t , max → exp [ i θ t ]? 4 / 16

  5. Dyson Brownian motion on the circle F IGURE : − i log ( ω x / 20 ) 0 ≤ x ≤ 100 � N Questions : if µ t , N = 1 p = 1 δ ω p , µ t , N → µ t , with supp ( µ t ) = exp i [ − θ t , θ t ]? For N all t >0, a.s., ω t , max → exp [ i θ t ]? 4 / 16

  6. A random matrix model, a diffusion on U ( N ) A scalar product �· , ·� on M N ( C ) : � X , Y � = N Tr ( X ∗ Y ) . [GUE Matrix] : ( H t , N ) t ≥ 0 gaussian process on H N = { H : ∈ M N ( C ) : H ∗ = H } such that ∀ X , Y ∈ H N , E [ � X , H t , N �� Y , H s , N � ] = t ∧ s � X , Y � .  ...  Y l , m , t 1   √ B p , t  ,   N  ... Y l , m , t 1 2 ( B 1 l , m , t + iB 2 Y l , m , t = l , m , t ) √ l , m , t ) l < m , ( B p , t ) p : N 2 independant standard real brownian ( B 1 l , m , t ) l < m , ( B 2 motions. 5 / 16

  7. A random matrix model, a diffusion on U ( N ) A scalar product �· , ·� on M N ( C ) : � X , Y � = N Tr ( X ∗ Y ) . [GUE Matrix] : ( H t , N ) t ≥ 0 gaussian process on H N = { H : ∈ M N ( C ) : H ∗ = H } such that ∀ X , Y ∈ H N , E [ � X , H t , N �� Y , H s , N � ] = t ∧ s � X , Y � .  ...  Y l , m , t 1   √ B p , t  ,   N  ... Y l , m , t 1 2 ( B 1 l , m , t + iB 2 Y l , m , t = l , m , t ) √ l , m , t ) l < m , ( B p , t ) p : N 2 independant standard real brownian ( B 1 l , m , t ) l < m , ( B 2 motions. 5 / 16

  8. A random matrix model, a diffusion on U ( N ) Set K t , N = iH t , N , ( U t , N ) t ≥ 0 the solution of the M N ( C ) - valued SDE, � = U t , N . dK t , N − 1 2 U t , N dt = U t , N ◦ dK t , N , dU t , N = Id . U 0 Proposition i) A.s. for all t ≥ 0 , U t , N ∈ U ( N ) = { U ∈ M N ( C ) : UU ∗ = Id } . ii) The eigenvalues ( ω t , 1 , . . . , ω t , N ) of U t , N satisfy the equation (Unitary Dyson). Remark Λ : unitary diagonal matrices, X = U ( N ) / Λ , Θ : X × Λ − → U ( N ) → UDU − 1 ( U . Λ , D ) �− Then, Jac (Θ)( U . Λ , D ) = V ( D 1 , 1 , . . . , D N , N ) . 6 / 16

  9. A random matrix model, a diffusion on U ( N ) Set K t , N = iH t , N , ( U t , N ) t ≥ 0 the solution of the M N ( C ) - valued SDE, � = U t , N . dK t , N − 1 2 U t , N dt = U t , N ◦ dK t , N , dU t , N = Id . U 0 Proposition i) A.s. for all t ≥ 0 , U t , N ∈ U ( N ) = { U ∈ M N ( C ) : UU ∗ = Id } . ii) The eigenvalues ( ω t , 1 , . . . , ω t , N ) of U t , N satisfy the equation (Unitary Dyson). Remark Λ : unitary diagonal matrices, X = U ( N ) / Λ , Θ : X × Λ − → U ( N ) → UDU − 1 ( U . Λ , D ) �− Then, Jac (Θ)( U . Λ , D ) = V ( D 1 , 1 , . . . , D N , N ) . 6 / 16

  10. Moment method µ t , N = 1 � δ λ . N λ ∈ Spec ( U t , N ) U w n µ t , N ( dw ) = 1 � N Tr ( U n Moments : t , N ) , n ∈ Z . Theorem (P . Biane, F . Xu, T. Lévy) For all t ≥ 0 , f ∈ C ( U , R ) , a.s., µ t , N ( f ) − → µ t ( f ) . µ t unique measure on U , such that ∀ n ∈ Z ∗ , a.s., � | n | | n |− 1 ( −| n | t ) k 1 ω n µ t ( d ω ) = 1 � � −| n | t N Tr ( U n � 2 . t , N ) − → e | n | k ! k + 1 U k = 0 7 / 16

  11. Moment method µ t , N = 1 � δ λ . N λ ∈ Spec ( U t , N ) U w n µ t , N ( dw ) = 1 � N Tr ( U n Moments : t , N ) , n ∈ Z . Theorem (P . Biane, F . Xu, T. Lévy) For all t ≥ 0 , f ∈ C ( U , R ) , a.s., µ t , N ( f ) − → µ t ( f ) . µ t unique measure on U , such that ∀ n ∈ Z ∗ , a.s., � | n | | n |− 1 ( −| n | t ) k 1 ω n µ t ( d ω ) = 1 � � −| n | t N Tr ( U n � 2 . t , N ) − → e | n | k ! k + 1 U k = 0 7 / 16

  12. Moment method d µ t ( x ) = ρ t ( x ) dx , F IGURE : Plot of ρ t ( e 2 i πθ ) , Axes : X : angle : θ ∈ ] − 1 2 , 1 2 [ , Y : time t ∈ [ 0 , 6 ] . supp ( ρ t ) = [ − θ t , θ t ] θ 4 = π. 8 / 16

  13. Moment method ∀ t ≥ 0 , S N t = Spec ( U t , N ) , S t = supp ( µ t ) . Theorem ( D., B. Collins,T. Kemp) ∀ t ≥ 0 , d Haus ( S N t , S t ) → 0 , as N → ∞ , in probability. i log ( U t , N ) , i U t , N − Id Problems : i) Back to H n : 1 U t , N + Id ∈ H n sign moments, no hope to study easily asymptotics of moments. ii) Contrary to the GUE case no independance between coefficients of U ( N ) , no compatibility between the measures of U t , N + 1 and U t , N , a priori, no recursion formula. iii) Stieltjes transform approach : leads to study the stability of a complex Burger equation ∂ t H t , N ( z ) = zH t , N ( z ) ∂ z H t , N ( z ) + 1 N 2 R t , N ( z ) , H 0 , N ( z ) = 1 + z 1 − z , H t , N : { z : | z | < 1 } → − i H . 9 / 16

  14. Moment method ∀ t ≥ 0 , S N t = Spec ( U t , N ) , S t = supp ( µ t ) . Theorem ( D., B. Collins,T. Kemp) ∀ t ≥ 0 , d Haus ( S N t , S t ) → 0 , as N → ∞ , in probability. i log ( U t , N ) , i U t , N − Id Problems : i) Back to H n : 1 U t , N + Id ∈ H n sign moments, no hope to study easily asymptotics of moments. ii) Contrary to the GUE case no independance between coefficients of U ( N ) , no compatibility between the measures of U t , N + 1 and U t , N , a priori, no recursion formula. iii) Stieltjes transform approach : leads to study the stability of a complex Burger equation ∂ t H t , N ( z ) = zH t , N ( z ) ∂ z H t , N ( z ) + 1 N 2 R t , N ( z ) , H 0 , N ( z ) = 1 + z 1 − z , H t , N : { z : | z | < 1 } → − i H . 9 / 16

  15. Moment method ∀ t ≥ 0 , S N t = Spec ( U t , N ) , S t = supp ( µ t ) . Theorem ( D., B. Collins,T. Kemp) ∀ t ≥ 0 , d Haus ( S N t , S t ) → 0 , as N → ∞ , in probability. i log ( U t , N ) , i U t , N − Id Problems : i) Back to H n : 1 U t , N + Id ∈ H n sign moments, no hope to study easily asymptotics of moments. ii) Contrary to the GUE case no independance between coefficients of U ( N ) , no compatibility between the measures of U t , N + 1 and U t , N , a priori, no recursion formula. iii) Stieltjes transform approach : leads to study the stability of a complex Burger equation ∂ t H t , N ( z ) = zH t , N ( z ) ∂ z H t , N ( z ) + 1 N 2 R t , N ( z ) , H 0 , N ( z ) = 1 + z 1 − z , H t , N : { z : | z | < 1 } → − i H . 9 / 16

  16. Moment method Strategy for the upperbound : ∀ ε > 0 , t ≥ 0 to prove that a.s., lim sup 1 i log ω t , max ≤ θ t + ε, it is sufficient to prove that ∀ f ∈ C ∞ ( U ) , ∃ δ, K > 0 , with | E [ µ t , N ( f )] − µ t ( f ) | ≤ KN − 1 − δ , (Speed order 1) and if supp ( f ) ∩ supp ( µ t ) = ∅ , Var ( µ t , N ( f )) ≤ KN − 3 − δ . (Speed order 2) Choose f ∈ C ∞ bump function with P N ,ε = P ( i − 1 log ( ω t , max ) > θ t + ε ) ≤ P ( N µ t , N ( f ) ≥ 1 ) . Then, P N ,ε ≤ ( N − 1 − E [ µ t , N ( f )]) − 2 Var ( µ t , N ( f )) ≤ K ′ N − 1 − δ . 10 / 16

  17. Moment method Strategy for the upperbound : ∀ ε > 0 , t ≥ 0 to prove that a.s., lim sup 1 i log ω t , max ≤ θ t + ε, it is sufficient to prove that ∀ f ∈ C ∞ ( U ) , ∃ δ, K > 0 , with | E [ µ t , N ( f )] − µ t ( f ) | ≤ KN − 1 − δ , (Speed order 1) and if supp ( f ) ∩ supp ( µ t ) = ∅ , Var ( µ t , N ( f )) ≤ KN − 3 − δ . (Speed order 2) Choose f ∈ C ∞ bump function with P N ,ε = P ( i − 1 log ( ω t , max ) > θ t + ε ) ≤ P ( N µ t , N ( f ) ≥ 1 ) . Then, P N ,ε ≤ ( N − 1 − E [ µ t , N ( f )]) − 2 Var ( µ t , N ( f )) ≤ K ′ N − 1 − δ . 10 / 16

  18. Embed and compare To get (Speed order 1), it is sufficient to prove that ∃ m ∈ N ∗ , δ, K > 0, such that � ≤ K n m � � � � � ω n µ t , N ( d ω )] − ω n µ t ( d ω ) � � E [ N 1 + δ . � � U U N , d ∈ N ∗ , on the same probability space, consider ( U i t , N ) 1 ≤ i ≤ d , t ≥ 0 i.i.d. sequence of law ( U t , N ) t ≥ 0 , ( U t , dN ) t ≥ 0 independant of it and set U 1  0  t , N ... U t , d , N =  ∈ U ( dN )    U d 0 t , N For any P ∈ C [ X ] , ( dN ) − 1 E [ Tr ( P ( U t , d , N ))] = E [ µ t , N ( P )] 11 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend