approaches for angle of arrival estimation
play

Approaches for Angle of Arrival Estimation Wenguang Mao Angle of - PowerPoint PPT Presentation

Approaches for Angle of Arrival Estimation Wenguang Mao Angle of Arrival (AoA) Definition: the elevation and azimuth angle of incoming signals Also called direction of arrival (DoA) AoA Estimation Applications: localization,


  1. Approaches for Angle of Arrival Estimation Wenguang Mao

  2. Angle of Arrival (AoA) • Definition: the elevation and azimuth angle of incoming signals • Also called direction of arrival (DoA)

  3. AoA Estimation • Applications: localization, tracking, gesture recognition, …… • Requirements: antenna array • Approaches: • Generate a power profile over various incoming angles • Determine all AoA 𝜄 " 𝜾 𝟐 𝜾 𝟑

  4. Related Concepts • Synthetic aperture radar (SAR) • Using a moving antenna to emulate an array • Alternative way of using physical antenna array • NOT an estimation approach in the context of AoA • Most AoA estimation methods can be applied to both physical antenna array and SAR • In this presentation, we only focus on antenna array • May require some modification when applied to SAR

  5. Related Concepts • Beamforming • A class of AoA estimation approaches AoA Estimation approaches • MUSIC • A specific algorithm in subspace-based Subspace methods approaches Beamforming MUSIC

  6. Approaches for AoA Estimation • Naïve approach • Beamforming approaches • Bartlett method • MVDR • Linear prediction • Subspace based approaches • MUSIC and its variants • ESPIRIT • Maximum likelihood estimator • ……

  7. Key Insights • Phase changes over antennas are determined by the incoming angle • Far-field assumption • Phase of the antenna 1: 𝜚 ' • Phase of the antenna 2: 𝜚 ' • Then the difference is given by 𝝔 𝟑 − 𝝔 𝟐 = 𝟑𝝆 𝒆𝒅𝒑𝒕𝜾 𝟐 + 𝟑𝐥𝝆 𝝁

  8. Naïve approach • Determine AoA based on the phase difference of two antenna 𝒅𝒑𝒕𝜾 𝟐 = (𝚬𝝔 𝟑𝝆 − 𝒍) 𝝁 𝒆 • Problems: • Works for only one incoming signals • Phase measurement could be noisy • Ambiguity • Adopted and improved by RF-IDraw

  9. Using Antenna Array • Received signals at 𝑛 -th antenna: 𝑶 𝒇 𝒌⋅𝟑𝝆⋅𝝊 𝒐 ⋅(𝒏D𝟐) + 𝒐 𝒏 (𝒖) 𝒚 𝒏 𝒖 = < 𝒕 𝒐 (𝒖) 𝒐?𝟐 𝑡 F (𝑢) : n-th source signals 𝜐 F = IJKLM N : phase shift per antenna O 𝑂 : the number of sources 𝑁 : the number of antennas 𝑜 S (𝑢) : noise terms

  10. Using Antenna Array • Matrix form: 𝒚 𝟐 𝒖 𝑼 𝒕 𝟐 𝒖 𝑼 𝒐 𝟐 𝒖 𝑼 𝒚 𝟑 𝒖 𝑼 𝒕 𝟑 𝒖 𝑼 𝒐 𝟑 𝒖 𝑼 𝒃(𝜾 𝟑 ) ⋯ = 𝒃(𝜾 𝟐 ) 𝒃(𝜾 𝑶 ) + ⋮ ⋮ ⋮ 𝒚 𝑵 𝒖 𝑼 𝒕 𝑶 𝒖 𝑼 𝒐 𝑵 𝒖 𝑼 𝒀 = 𝑩𝑻 + 𝑶 𝑼 Steering vector: 𝒃 𝜾 = 𝟐 𝒇 𝒌𝟑𝝆𝝊 𝜾 𝒇 𝒌𝟑𝝆𝝊 𝜾 ⋅𝟑 … 𝒇 𝒌𝟑𝝆𝝊 𝜾 𝑵D𝟐

  11. Beamforming at the Receiver • Definition: a method to create certain radiation pattern by combining signals from different antennas with different weights . • Will magnify the signals from certain direction while suppressing those from other directions

  12. Beamforming at the Receiver • Signals after beamforming using a weight vector 𝒙 𝒁 = 𝒙 𝑰 𝒀 • By selecting different 𝑥 , the received signal 𝑍 will contain the signal sources arrived from different direction. • Beamforming techniques are widely used in wireless communications

  13. Beamforming at the Receiver • Adjust the weight vector to rotate the radiation pattern to angle 𝜄 • Measure the received signal strength 𝑄(𝜄) 𝜾 𝟐 • Repeat this process for any 𝜄 in [0, pi] 𝜾 𝟑 • Plot ( 𝜄, 𝑄(𝜄) ) • Peaks in the plot indicates the angle of arrival

  14. Bartlett Beamforming • Also called: correlation beamforming, conventional beamforming, delay-and-sum beamforming, or Fourier beamforming • Key idea : magnify the signals from certain direction by compensating the phase shift Phase shift • Consider one source signal 𝑡 𝑢 arrived at angle 𝜄 d • Signal at 𝑛 -th antenna: x f t = 𝑡(𝑢) ⋅ 𝑓 i⋅jk⋅l(M m )(SD') • Weight at 𝑛 -th antenna: w f = 𝑓 i⋅jk⋅l(M)(SD') ∗ 𝑦 S 𝑢 u is • Only when 𝜄 = 𝜄 d , the received signal Y = w p X = ∑𝑥 S maximized

  15. Bartlett Beamforming • Weight vector for beamforming angle 𝜄 : This is why it is called 𝒙 = 𝒃(𝜾) steering vector • Signal power at angle 𝜄 : 𝑰 = 𝒙 𝑰 𝒀𝒀 𝑰 𝒙 = 𝒙 𝑰 𝑺 𝒀𝒀 𝒙 = 𝒃 𝑰 𝜾 𝑺 𝒀𝒀 𝒃(𝜾) 𝑸 𝜾 = 𝒁𝒁 𝑰 = 𝒙 𝑰 𝒀 𝒙 𝑰 𝒀 Covariance matrix • Used by Ubicarse with SAR

  16. Bartlett Beamforming • Works well when there is only one source signal • Suffers when there are multiple sources: very low resolution

  17. Minimum Variance Distortionless Response (MVDR) • Also called Capon’s beamforming • Key idea : maintain the signal from the desired direction while minimizing the signals from other direction • Mathematically, we want to find such weight vector 𝒙 for the beaming angle 𝜄 𝐧𝐣𝐨 𝒁𝒁 𝑰 = 𝐧𝐣𝐨 𝒙 𝑰 𝑺 𝒀𝒀 𝒙 𝒙 𝑰 𝒃 𝜾 = 𝟐 s.t. 𝒙 𝑰 (𝒃 𝜾 𝒕 𝒖 𝑼 ) = 𝒕 𝒖 𝑼 Maintain the signals from angle 𝜾

  18. MVDR • Weight vector for beamforming angle 𝜄 : D𝟐 𝒃 𝑰 (𝜾) 𝑺 𝒀𝒀 𝒙 = D𝟐 𝒃 𝑰 (𝜾) 𝒃 𝜾 𝑺 𝒀𝒀 • Signal power at angle 𝜄 : 𝟐 𝑸 𝜾 = 𝒁𝒁 𝑰 = 𝒙 𝑰 𝑺 𝒀𝒀 𝒙 = D𝟐 𝒃 𝑰 (𝜾) 𝒃 𝜾 𝑺 𝒀𝒀

  19. MVDR • Resolution is significantly enhanced compared to Bartlett method • But still not good enough • Better beamforming approaches are developed, e.g., Linear Prediction • Or resort to subspace based approaches

  20. Subspace Based Approaches • Beamforming is a way of shaping received signals • Can be used for estimating AoA • Can also be used for directional communications • Subspace based approaches are specially designed for parameter (i.e., AoA) estimation using received signals • Cannot be used for extracting signals arrived from certain direction • Subspace based approaches decompose the received signals into “signal subspace” and “noise subspace” • Leverage special properties of these subspaces for estimating AoA

  21. Multiple Signal Classification (MUSIC) • Key ideas: we want to find a vector 𝑟 and a vector function 𝑔(𝜄) • Such that 𝒓 𝑰 𝒈 𝜾 = 𝟏 if and only if 𝜄 = 𝜄 " (i.e., one of AoA) ' ' • Then we can plot 𝒒 𝜾 = „ = ƒ ‚ M •• ‚ ƒ(M) • ‚ ƒ M • The peaks in the plot indicates AoA • We can expect very sharp peak since 𝑟 … 𝑔 𝜄 = 0 , so the inverse of its magnitude is infinity How to find 𝒓 and 𝒈(𝜾)

  22. Multiple Signal Classification (MUSIC) • MUSIC gives a way to find a pair of 𝑟 and 𝑔(𝜄) • The signals from antenna array 𝒀 = 𝑩𝑻 + 𝑶 • Covariance matrix of the signals 𝑺 𝒀𝒀 = 𝑭[𝒀𝒀 𝑰 ] = 𝑭[𝑩𝑻𝑻 𝑰 𝑩 𝑰 ] + 𝑭[𝑶𝑶 𝑰 ] 𝑺 𝒀𝒀 = 𝑩𝑭[𝑻𝑻 𝑰 ]𝑩 𝑰 + 𝝉 𝟑 𝑱 𝑺 𝒀𝒀 = 𝑩𝑺 𝑻𝑻 𝑩 𝑰 + 𝝉 𝟑 𝑱 Noise terms Signal terms

  23. MUSIC • Consider the signal term • 𝑆 •• is 𝑂×𝑂 matrix, where 𝑂 is the number of source signals • 𝑆 LL has the rank equal to 𝑂 if source signals are independent • 𝐵 is 𝑁×𝑂 matrix, where 𝑁 is the number of antenna • 𝐵 has full column rank • The signal term is 𝑁×𝑁 matrix, and its rank is 𝑂 • The signal term has 𝑂 positive eigenvalues and 𝑁 − 𝑂 zero eigenvalues, if M>N • There are 𝑁 − 𝑂 eigenvectors 𝑟 " such that 𝐵𝑆 •• 𝐵 … 𝑟 " = 0 • Then 𝐵 … 𝑟 " = 0 , where 𝐵 = [𝑏(𝜄 ' ) 𝑏(𝜄 j ) ⋯ 𝑏(𝜄 ‘ )] … 𝑏 𝜄 = 0 if 𝜄 = 𝜄 " What we want !!! • Then 𝑟 "

  24. MUSIC • 𝑏(𝜄) is the steering function, so it is known • Needs to determine 𝑟 " , which needs the eigenvalue decomposition of the signal term. • We don’t know the signal term; we only know the sum of the signal term and the noise term, i.e., 𝑆 ’’ • All of eigenvectors of the signal term are also ones for 𝑆 ’’ , and corresponding eigenvalues are added by 𝜏 j • Only need to find the eigenvectors of 𝑆 ’’ with eigenvalues equal to 𝜏 j

  25. MUSIC • Derive 𝑆 ’’ • Perform eigenvalue decomposition on 𝑆 ’’ • Sort eigenvectors according to their eigenvalues in descent order • Select last 𝑁 − 𝑂 eigenvectors 𝑟 " • Noise space matrix 𝑅 ‘ = [𝑟 •–' 𝑟 •–j … 𝑟 ‘ ] … 𝑏 𝜄 = 0 for any AoA 𝜄 " • 𝑅 ‘ ' • Plot 𝑞 𝜄 = ‚ ˜(M) and find the peaks ˜ ‚ M ™ š ™ š

  26. Performance Comparison (a) 10 antennas (a) 50 antennas

  27. Performance Comparison (a) SNR 1dB (b) SNR 20dB Music variants Beamforming approaches

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend