free monotone transport without a trace
play

Free monotone transport without a trace Brent Nelson UCLA October - PowerPoint PPT Presentation

Free monotone transport without a trace Brent Nelson UCLA October 30, 2013 Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 1 / 38 Preliminaries Free Probability Let ( M , ) be a von Neumann algebra with a


  1. Preliminaries Setup Ω is cyclic and separating for Γ q ( H R , U t ) ′′ and hence the vector state ϕ ( · ) = � Ω , · Ω � U , q is a faithful, non-degenerate state ( free quasi-free state Throughout, M shall denote Γ 0 ( H R , U t ) ′′ = W ∗ ( X 1 , . . . , X N ), with X j := s 0 ( e j ). With respect to the vacuum vector state ϕ , the X j are centered semicircular random variables of variance 1, but aren’t free unless U t = id . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 7 / 38

  2. Preliminaries Setup Ω is cyclic and separating for Γ q ( H R , U t ) ′′ and hence the vector state ϕ ( · ) = � Ω , · Ω � U , q is a faithful, non-degenerate state ( free quasi-free state Throughout, M shall denote Γ 0 ( H R , U t ) ′′ = W ∗ ( X 1 , . . . , X N ), with X j := s 0 ( e j ). With respect to the vacuum vector state ϕ , the X j are centered semicircular random variables of variance 1, but aren’t free unless U t = id . Application of result: for small values of | q | , Γ q ( H R , U t ) ′′ is isomorphic to M . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 7 / 38

  3. Preliminaries Tomita-Takesaki theory Modular group: σ ϕ z ( X j ) = � N k =1 [ A iz ] jk X k for z ∈ C Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 8 / 38

  4. Preliminaries Tomita-Takesaki theory Modular group: σ ϕ z ( X j ) = � N k =1 [ A iz ] jk X k for z ∈ C Using the vector notation X = ( X 1 , . . . , X N ) we have σ ϕ z ( X ) = A iz X . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 8 / 38

  5. Preliminaries Tomita-Takesaki theory Modular group: σ ϕ z ( X j ) = � N k =1 [ A iz ] jk X k for z ∈ C Using the vector notation X = ( X 1 , . . . , X N ) we have σ ϕ z ( X ) = A iz X . KMS condition: ϕ ( X j P ) = ϕ ( P σ − i ( X j )) = ϕ ( P [ AX ] j ) ϕ ( PX j ) = ϕ ( σ i ( X j ) P ) = ϕ ([ A − 1 X ] j P ) . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 8 / 38

  6. Preliminaries Banach algebras and norms P := C � X 1 , . . . , X N � ⊂ M . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 9 / 38

  7. Preliminaries Banach algebras and norms P := C � X 1 , . . . , X N � ⊂ M . Can write each P ∈ P as deg( P ) deg( P ) � � � P = c ( j ) X j = π n ( P ) , c ( j ) ∈ C n =0 n =0 | j | = n Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 9 / 38

  8. Preliminaries Banach algebras and norms P := C � X 1 , . . . , X N � ⊂ M . Can write each P ∈ P as deg( P ) deg( P ) � � � P = c ( j ) X j = π n ( P ) , c ( j ) ∈ C n =0 n =0 | j | = n For R > 0 deg( P ) | c ( j ) | R n = � � � � P � R := � π n ( P ) � R , n =0 n | j | = n defines a Banach norm on P . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 9 / 38

  9. Preliminaries Banach algebras and norms P := C � X 1 , . . . , X N � ⊂ M . Can write each P ∈ P as deg( P ) deg( P ) � � � P = c ( j ) X j = π n ( P ) , c ( j ) ∈ C n =0 n =0 | j | = n For R > 0 deg( P ) | c ( j ) | R n = � � � � P � R := � π n ( P ) � R , n =0 n | j | = n defines a Banach norm on P . P ( R ) = P �·� R Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 9 / 38

  10. Preliminaries Banach algebras and norms P := C � X 1 , . . . , X N � ⊂ M . Can write each P ∈ P as deg( P ) deg( P ) � � � P = c ( j ) X j = π n ( P ) , c ( j ) ∈ C n =0 n =0 | j | = n For R > 0 deg( P ) | c ( j ) | R n = � � � � P � R := � π n ( P ) � R , n =0 n | j | = n defines a Banach norm on P . P ( R ) = P �·� R If R ≥ 2 ≥ � X j � , then P ( R ) ⊂ M . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 9 / 38

  11. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  12. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Define ρ : P → P on monomials by ρ ( X j 1 · · · X j n ) = σ − i ( X j n ) X i 1 · · · X j n − 1 . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  13. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Define ρ : P → P on monomials by ρ ( X j 1 · · · X j n ) = σ − i ( X j n ) X i 1 · · · X j n − 1 . We call ρ k ( P ) for k ∈ Z a σ -cyclic rearrangement of P . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  14. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Define ρ : P → P on monomials by ρ ( X j 1 · · · X j n ) = σ − i ( X j n ) X i 1 · · · X j n − 1 . We call ρ k ( P ) for k ∈ Z a σ -cyclic rearrangement of P . Define deg( P ) � � � � ρ k n ( π n ( P )) � P � R ,σ = sup R , � � � k n ∈ Z n =0 is a Banach norm on P finite = { P ∈ P : � P � R ,σ < ∞} . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  15. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Define ρ : P → P on monomials by ρ ( X j 1 · · · X j n ) = σ − i ( X j n ) X i 1 · · · X j n − 1 . We call ρ k ( P ) for k ∈ Z a σ -cyclic rearrangement of P . Define deg( P ) � � � � ρ k n ( π n ( P )) � P � R ,σ = sup R , � � � k n ∈ Z n =0 is a Banach norm on P finite = { P ∈ P : � P � R ,σ < ∞} . P ϕ ⊂ P finite , in fact � P � R ,σ ≤ � A � deg( P ) − 1 � P � R . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  16. Preliminaries Banach algebras and norms P ϕ = { P ∈ P : σ i ( P ) = P } = M ϕ ∩ P . Define ρ : P → P on monomials by ρ ( X j 1 · · · X j n ) = σ − i ( X j n ) X i 1 · · · X j n − 1 . We call ρ k ( P ) for k ∈ Z a σ -cyclic rearrangement of P . Define deg( P ) � � � � ρ k n ( π n ( P )) � P � R ,σ = sup R , � � � k n ∈ Z n =0 is a Banach norm on P finite = { P ∈ P : � P � R ,σ < ∞} . P ϕ ⊂ P finite , in fact � P � R ,σ ≤ � A � deg( P ) − 1 � P � R . P ( R ,σ ) = P finite �·� R ,σ Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38

  17. Preliminaries Banach algebras and norms We let P ( R ) and P ( R ,σ ) denote the elements of the respective ϕ ϕ algebras which are fixed by σ i . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 11 / 38

  18. Preliminaries Banach algebras and norms We let P ( R ) and P ( R ,σ ) denote the elements of the respective ϕ ϕ algebras which are fixed by σ i . = { P : P ( R ,σ ) : ρ ( P ) = P } be the σ -cyclically symmetric Let P ( R ,σ ) c . s . elements. Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 11 / 38

  19. Preliminaries Banach algebras and norms We let P ( R ) and P ( R ,σ ) denote the elements of the respective ϕ ϕ algebras which are fixed by σ i . = { P : P ( R ,σ ) : ρ ( P ) = P } be the σ -cyclically symmetric Let P ( R ,σ ) c . s . elements. P ( R ) � N and P ( R ,σ ) � N we use the max-norm, which we still � � On denote � · � R and � · � R ,σ . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 11 / 38

  20. Preliminaries Differential operators Let δ j : P → P ⊗ P op be Voiculescu’s free difference quotients, defined by δ j ( X k ) = δ j = k 1 ⊗ 1 and the Leibniz rule. Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 12 / 38

  21. Preliminaries Differential operators Let δ j : P → P ⊗ P op be Voiculescu’s free difference quotients, defined by δ j ( X k ) = δ j = k 1 ⊗ 1 and the Leibniz rule. Conventions on P ⊗ P op : Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 12 / 38

  22. Preliminaries Differential operators Let δ j : P → P ⊗ P op be Voiculescu’s free difference quotients, defined by δ j ( X k ) = δ j = k 1 ⊗ 1 and the Leibniz rule. Conventions on P ⊗ P op : Suppress “ ◦ ” notation: a ⊗ b ◦ �→ a ⊗ b a ⊗ b # c ⊗ d = ( ac ) ⊗ ( db ) a ⊗ b # c = acb , m ( a ⊗ b ) = ab Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 12 / 38

  23. Preliminaries Differential operators Let δ j : P → P ⊗ P op be Voiculescu’s free difference quotients, defined by δ j ( X k ) = δ j = k 1 ⊗ 1 and the Leibniz rule. Conventions on P ⊗ P op : Suppress “ ◦ ” notation: a ⊗ b ◦ �→ a ⊗ b a ⊗ b # c ⊗ d = ( ac ) ⊗ ( db ) a ⊗ b # c = acb , m ( a ⊗ b ) = ab ( a ⊗ b ) ∗ = a ∗ ⊗ b ∗ ( a ⊗ b ) † = b ∗ ⊗ a ∗ ( a ⊗ b ) ⋄ = b ⊗ a Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 12 / 38

  24. Preliminaries Differential operators Let δ j : P → P ⊗ P op be Voiculescu’s free difference quotients, defined by δ j ( X k ) = δ j = k 1 ⊗ 1 and the Leibniz rule. Conventions on P ⊗ P op : Suppress “ ◦ ” notation: a ⊗ b ◦ �→ a ⊗ b a ⊗ b # c ⊗ d = ( ac ) ⊗ ( db ) a ⊗ b # c = acb , m ( a ⊗ b ) = ab ( a ⊗ b ) ∗ = a ∗ ⊗ b ∗ ( a ⊗ b ) † = b ∗ ⊗ a ∗ ( a ⊗ b ) ⋄ = b ⊗ a As a P − P bimodule: c · ( a ⊗ b ) = ( ca ) ⊗ b and ( a ⊗ b ) · c = a ⊗ ( bc ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 12 / 38

  25. Preliminaries Differential operators For j , k ∈ { 1 , . . . , N } denote � 2 � α jk = = ϕ ( X k X j ) , 1 + A jk then α jk = α kj , α jj = 1, and | α jk | ≤ 1. Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 13 / 38

  26. Preliminaries Differential operators For j , k ∈ { 1 , . . . , N } denote � 2 � α jk = = ϕ ( X k X j ) , 1 + A jk then α jk = α kj , α jj = 1, and | α jk | ≤ 1. For each j define σ -difference quotient ∂ j = � N k =1 α kj δ k Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 13 / 38

  27. Preliminaries Differential operators For j , k ∈ { 1 , . . . , N } denote � 2 � α jk = = ϕ ( X k X j ) , 1 + A jk then α jk = α kj , α jj = 1, and | α jk | ≤ 1. For each j define σ -difference quotient ∂ j = � N k =1 α kj δ k We consider this derivation because ϕ ( X j P ) = ϕ ⊗ ϕ op ( ∂ j ( P )) for P ∈ P . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 13 / 38

  28. Preliminaries Differential operators For j , k ∈ { 1 , . . . , N } denote � 2 � α jk = = ϕ ( X k X j ) , 1 + A jk then α jk = α kj , α jj = 1, and | α jk | ≤ 1. For each j define σ -difference quotient ∂ j = � N k =1 α kj δ k We consider this derivation because ϕ ( X j P ) = ϕ ⊗ ϕ op ( ∂ j ( P )) for P ∈ P . ∂ j so that ∂ j ( P ) † = ¯ Define another derivation ¯ ∂ j ( P ∗ ). Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 13 / 38

  29. Preliminaries Differential operators For j , k ∈ { 1 , . . . , N } denote � 2 � α jk = = ϕ ( X k X j ) , 1 + A jk then α jk = α kj , α jj = 1, and | α jk | ≤ 1. For each j define σ -difference quotient ∂ j = � N k =1 α kj δ k We consider this derivation because ϕ ( X j P ) = ϕ ⊗ ϕ op ( ∂ j ( P )) for P ∈ P . ∂ j so that ∂ j ( P ) † = ¯ Define another derivation ¯ ∂ j ( P ∗ ). The modular group interacts with ∂ j as follows: ( σ i ⊗ σ i ) ◦ ∂ j ◦ σ − i = ¯ ∂ j Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 13 / 38

  30. Preliminaries Differential operators For P = ( P 1 , . . . , P N ) ∈ P N define J P , J σ P ∈ M N ( P ⊗ P op ) by [ J P ] jk = δ k P j [ J σ P ] jk = ∂ k P j Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 14 / 38

  31. Preliminaries Differential operators For P = ( P 1 , . . . , P N ) ∈ P N define J P , J σ P ∈ M N ( P ⊗ P op ) by [ J P ] jk = δ k P j [ J σ P ] jk = ∂ k P j → M N ( P ⊗ P op ) in the obvious way. M N ( C ) ֒ Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 14 / 38

  32. Preliminaries Differential operators For P = ( P 1 , . . . , P N ) ∈ P N define J P , J σ P ∈ M N ( P ⊗ P op ) by [ J P ] jk = δ k P j [ J σ P ] jk = ∂ k P j → M N ( P ⊗ P op ) in the obvious way. M N ( C ) ֒ Examples: [ J X ] jk = δ k X j = δ k = j 1 ⊗ 1 = [1] jk � 2 � [ J σ X ] jk = ∂ k X j = α jk 1 ⊗ 1 = 1 + A jk Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 14 / 38

  33. Preliminaries Differential operators For P = ( P 1 , . . . , P N ) ∈ P N define J P , J σ P ∈ M N ( P ⊗ P op ) by [ J P ] jk = δ k P j [ J σ P ] jk = ∂ k P j → M N ( P ⊗ P op ) in the obvious way. M N ( C ) ֒ Examples: [ J X ] jk = δ k X j = δ k = j 1 ⊗ 1 = [1] jk � 2 � [ J σ X ] jk = ∂ k X j = α jk 1 ⊗ 1 = 1 + A jk A simple computation reveals J P = J σ P # J σ X − 1 for all P ∈ ( P ( R ) ) N . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 14 / 38

  34. Preliminaries Differential operators For each j we define the j-th σ -cyclic derivative D j : P → P by n � D j ( X k 1 · · · X k n ) = α jk l σ − i ( X k l +1 · · · X k n ) X k 1 · · · X k l − 1 , l =1 or D j = m ◦ ⋄ ◦ (1 ⊗ σ − i ) ◦ ¯ ∂ j . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 15 / 38

  35. Preliminaries Differential operators For each j we define the j-th σ -cyclic derivative D j : P → P by n � D j ( X k 1 · · · X k n ) = α jk l σ − i ( X k l +1 · · · X k n ) X k 1 · · · X k l − 1 , l =1 or D j = m ◦ ⋄ ◦ (1 ⊗ σ − i ) ◦ ¯ ∂ j . We define the σ -cyclic gradient by D P = ( D 1 P , . . . , D N P ) ∈ P N for P ∈ P . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 15 / 38

  36. Preliminaries Differential operators For each j we define the j-th σ -cyclic derivative D j : P → P by n � D j ( X k 1 · · · X k n ) = α jk l σ − i ( X k l +1 · · · X k n ) X k 1 · · · X k l − 1 , l =1 or D j = m ◦ ⋄ ◦ (1 ⊗ σ − i ) ◦ ¯ ∂ j . We define the σ -cyclic gradient by D P = ( D 1 P , . . . , D N P ) ∈ P N for P ∈ P . Example: N � 1 + A � V 0 = 1 X k X j ∈ P ( R ,σ ) � c . s . 2 2 jk j , k =1 then D V 0 = ( X 1 , . . . , X N ) = X . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 15 / 38

  37. Preliminaries Differential operators For each j we define the j-th σ -cyclic derivative D j : P → P by n � D j ( X k 1 · · · X k n ) = α jk l σ − i ( X k l +1 · · · X k n ) X k 1 · · · X k l − 1 , l =1 or D j = m ◦ ⋄ ◦ (1 ⊗ σ − i ) ◦ ¯ ∂ j . We define the σ -cyclic gradient by D P = ( D 1 P , . . . , D N P ) ∈ P N for P ∈ P . Example: N � 1 + A � V 0 = 1 X k X j ∈ P ( R ,σ ) � c . s . 2 2 jk j , k =1 then D V 0 = ( X 1 , . . . , X N ) = X . D j so that ( D j P ) ∗ = ¯ Can also define ¯ D j ( P ∗ ). Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 15 / 38

  38. Preliminaries Schwinger-Dyson equation Given V ∈ P ( R ,σ ) c . s . , we say that a state ψ on W ∗ ( X 1 , . . . , X N ) satisfies the Schwinger-Dyson equation with potential V if ψ ( D V # P ) = ψ ⊗ ψ op ⊗ Tr( J σ P ) ∀ P ∈ P ( R ) , in which case we call ψ the free Gibbs state with potential V , and may denote it ϕ V . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 16 / 38

  39. Preliminaries Schwinger-Dyson equation Given V ∈ P ( R ,σ ) c . s . , we say that a state ψ on W ∗ ( X 1 , . . . , X N ) satisfies the Schwinger-Dyson equation with potential V if ψ ( D V # P ) = ψ ⊗ ψ op ⊗ Tr( J σ P ) ∀ P ∈ P ( R ) , in which case we call ψ the free Gibbs state with potential V , and may denote it ϕ V . The state ϕ V is unique provided � V − V 0 � R ,σ is small enough. Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 16 / 38

  40. Preliminaries Schwinger-Dyson equation Given V ∈ P ( R ,σ ) c . s . , we say that a state ψ on W ∗ ( X 1 , . . . , X N ) satisfies the Schwinger-Dyson equation with potential V if ψ ( D V # P ) = ψ ⊗ ψ op ⊗ Tr( J σ P ) ∀ P ∈ P ( R ) , in which case we call ψ the free Gibbs state with potential V , and may denote it ϕ V . The state ϕ V is unique provided � V − V 0 � R ,σ is small enough. The vacuum vector state ϕ = ϕ V 0 . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 16 / 38

  41. Preliminaries Schwinger-Dyson equation Given V ∈ P ( R ,σ ) c . s . , we say that a state ψ on W ∗ ( X 1 , . . . , X N ) satisfies the Schwinger-Dyson equation with potential V if ψ ( D V # P ) = ψ ⊗ ψ op ⊗ Tr( J σ P ) ∀ P ∈ P ( R ) , in which case we call ψ the free Gibbs state with potential V , and may denote it ϕ V . The state ϕ V is unique provided � V − V 0 � R ,σ is small enough. The vacuum vector state ϕ = ϕ V 0 . Consequently, X = J ∗ σ (1), where 1 ∈ M N ( P ⊗ P op ) is the identity matrix. Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 16 / 38

  42. Preliminaries Schwinger-Dyson equation Idea is to suppose the law of Z = ( Z 1 , . . . , Z N ) ⊂ ( L , ψ ) is the free Gibbs state with potential V = V 0 + W : ψ Z = ϕ V . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 17 / 38

  43. Preliminaries Schwinger-Dyson equation Idea is to suppose the law of Z = ( Z 1 , . . . , Z N ) ⊂ ( L , ψ ) is the free Gibbs state with potential V = V 0 + W : ψ Z = ϕ V . By exploiting the Schwinger-Dyson equation, we will construct Y = ( Y 1 , . . . , Y N ) ⊂ ( M , ϕ ) of the form Y j = X j + f j whose law induced by ϕ is also the free Gibbs state with potential V . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 17 / 38

  44. Preliminaries Schwinger-Dyson equation Idea is to suppose the law of Z = ( Z 1 , . . . , Z N ) ⊂ ( L , ψ ) is the free Gibbs state with potential V = V 0 + W : ψ Z = ϕ V . By exploiting the Schwinger-Dyson equation, we will construct Y = ( Y 1 , . . . , Y N ) ⊂ ( M , ϕ ) of the form Y j = X j + f j whose law induced by ϕ is also the free Gibbs state with potential V . Provided � W � R ,σ is small enough, the free Gibbs state with potential V 0 + W will be unique and therefore we will have transport from ϕ X to ψ Z . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 17 / 38

  45. Construction of transport Equivalent forms of Schwinger-Dyson Suppose Y = ( Y 1 , . . . , Y N ) with Y j = X j + f j and f j ∈ P ( R ) , assume assume that ϕ Y satisfies the Schwinger-Dyson equation with potential V = V 0 + W . Then ( J σ ) ∗ Y (1) = D Y ( V 0 ( Y ) + W ( Y )) = Y + ( D W )( Y ) (1) = X + f + ( D W )( X + f ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 18 / 38

  46. Construction of transport Equivalent forms of Schwinger-Dyson Suppose Y = ( Y 1 , . . . , Y N ) with Y j = X j + f j and f j ∈ P ( R ) , assume assume that ϕ Y satisfies the Schwinger-Dyson equation with potential V = V 0 + W . Then ( J σ ) ∗ Y (1) = D Y ( V 0 ( Y ) + W ( Y )) = Y + ( D W )( Y ) (1) = X + f + ( D W )( X + f ) Need to write the left-hand side in terms of X . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 18 / 38

  47. Construction of transport Equivalent forms of Schwinger-Dyson Using a change of variables argument, the Schwinger-Dyson equation (1) is equivalent to � 1 � J ∗ σ ◦ (1 ⊗ σ i ) = X + f + ( D W )( X + f ) , (2) 1 + B where B = J σ f # J σ X − 1 . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 19 / 38

  48. Construction of transport Equivalent forms of Schwinger-Dyson Using a change of variables argument, the Schwinger-Dyson equation (1) is equivalent to � 1 � J ∗ σ ◦ (1 ⊗ σ i ) = X + f + ( D W )( X + f ) , (2) 1 + B where B = J σ f # J σ X − 1 . x 2 1 x x Using identities 1+ x = 1 − 1+ x and 1+ x = x − 1+ x and multiplying by 1 + B , (2) becomes − J ∗ σ ◦ (1 ⊗ σ i )( B ) − f � B � = D ( W ( X + f )) + B # f + B # J ∗ σ ◦ (1 ⊗ σ i ) (3) 1 + B � B 2 � − J ∗ σ ◦ (1 ⊗ σ i ) , 1 + B Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 19 / 38

  49. Construction of transport Equivalent forms of Schwinger-Dyson Lemma 2.1 Let g = g ∗ ∈ P ( R ,σ ) and let f = D g. Then for any m ≥ − 1 we have: ϕ B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) − J ∗ σ ◦ (1 ⊗ σ i )( B m +2 ) (4) 1 m + 2 D [( ϕ ⊗ 1) ◦ Tr A − 1 + (1 ⊗ ϕ ) ◦ Tr A ] ( B m +2 ) = Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 20 / 38

  50. Construction of transport Equivalent forms of Schwinger-Dyson Lemma 2.1 Let g = g ∗ ∈ P ( R ,σ ) and let f = D g. Then for any m ≥ − 1 we have: ϕ B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) − J ∗ σ ◦ (1 ⊗ σ i )( B m +2 ) (4) 1 m + 2 D [( ϕ ⊗ 1) ◦ Tr A − 1 + (1 ⊗ ϕ ) ◦ Tr A ] ( B m +2 ) = Proof. We prove the equivalence weakly by taking inner products against P ∈ ( P ( R ) ) N . Denote the left-hand side by E L and the right-hand side by E R . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 20 / 38

  51. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) � P , B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � ϕ Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 21 / 38

  52. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) � P , B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � ϕ N � P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · B jk # k j , k =1 Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 21 / 38

  53. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) � P , B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � ϕ N � P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · B jk # k j , k =1 N � ( σ i ⊗ 1)( B ⋄ jk )# P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · k j , k =1 Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 21 / 38

  54. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) � P , B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � ϕ N � P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · B jk # k j , k =1 N � ( σ i ⊗ 1)( B ⋄ jk )# P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · k j , k =1 (1 ⊗ σ − i )( B ∗ )# P , J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � = ϕ Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 21 / 38

  55. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) � P , B # J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � ϕ N � P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · B jk # k j , k =1 N � ( σ i ⊗ 1)( B ⋄ jk )# P ∗ J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � � � = ϕ j · k j , k =1 (1 ⊗ σ − i )( B ∗ )# P , J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � = ϕ [ J σ X − 1 #ˆ σ i ( J σ f )]# P , J ∗ σ ◦ (1 ⊗ σ i )( B m +1 ) � � = ϕ where ˆ σ i = σ i ⊗ σ − i . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 21 / 38

  56. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Hence if φ = ϕ ⊗ ϕ op ⊗ Tr then J σ X − 1 # J σ { ˆ σ i ( J σ f )# P } , (1 ⊗ σ i )( B m +1 ) � � � P , E L � ϕ = φ J σ P , (1 ⊗ σ i )( B m +2 ) � � − φ . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 22 / 38

  57. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Hence if φ = ϕ ⊗ ϕ op ⊗ Tr then J σ X − 1 # J σ { ˆ σ i ( J σ f )# P } , (1 ⊗ σ i )( B m +1 ) � � � P , E L � ϕ = φ J σ P , (1 ⊗ σ i )( B m +2 ) � � − φ . The “product rule” simplifies the right-hand side to simplify to � � Q P , J σ X − 1 #(1 ⊗ σ i )( B m +1 ) � P , E L � ϕ = φ , Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 22 / 38

  58. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Hence if φ = ϕ ⊗ ϕ op ⊗ Tr then J σ X − 1 # J σ { ˆ σ i ( J σ f )# P } , (1 ⊗ σ i )( B m +1 ) � � � P , E L � ϕ = φ J σ P , (1 ⊗ σ i )( B m +2 ) � � − φ . The “product rule” simplifies the right-hand side to simplify to � � Q P , J σ X − 1 #(1 ⊗ σ i )( B m +1 ) � P , E L � ϕ = φ , where, if a ⊗ b ⊗ c # 1 ξ = ( a ξ b ) ⊗ c and a ⊗ b ⊗ c # 2 ξ = a ⊗ ( b ξ c ), then Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 22 / 38

  59. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Hence if φ = ϕ ⊗ ϕ op ⊗ Tr then J σ X − 1 # J σ { ˆ σ i ( J σ f )# P } , (1 ⊗ σ i )( B m +1 ) � � � P , E L � ϕ = φ J σ P , (1 ⊗ σ i )( B m +2 ) � � − φ . The “product rule” simplifies the right-hand side to simplify to � � Q P , J σ X − 1 #(1 ⊗ σ i )( B m +1 ) � P , E L � ϕ = φ , where, if a ⊗ b ⊗ c # 1 ξ = ( a ξ b ) ⊗ c and a ⊗ b ⊗ c # 2 ξ = a ⊗ ( b ξ c ), then N [ Q P ] jk = � ( ∂ k ⊗ 1) ◦ ˆ σ i ◦ ∂ l ( f j )# 2 P l + (1 ⊗ ∂ k ) ◦ ˆ σ i ◦ ∂ l ( f j )# 1 P l l =1 Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 22 / 38

  60. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) So we have � E L , P � ϕ = φ ( Q P # J σ X − 1 # B m +1 ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 23 / 38

  61. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except [ R u ] i u j u = a u ⊗ b u . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  62. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  63. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( R 1 · · · R m +2 ) P k ) k Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  64. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( R 1 · · · R m +2 ) P k ) k � C ϕ ( a 1 · · · a m +2 ) ϕ ( ¯ = D k ( b m +2 · · · b 1 ) P k ) k Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  65. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( R 1 · · · R m +2 ) P k ) k � C ϕ ( a 1 · · · a m +2 ) ϕ ( ¯ = D k ( b m +2 · · · b 1 ) P k ) k � = C ϕ ( a 1 · · · a m +2 ) ϕ (ˆ σ i ◦ ∂ k ( b m +2 · · · b 1 )# P k ) k Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  66. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( R 1 · · · R m +2 ) P k ) k � C ϕ ( a 1 · · · a m +2 ) ϕ ( ¯ = D k ( b m +2 · · · b 1 ) P k ) k � = C ϕ ( a 1 · · · a m +2 ) ϕ (ˆ σ i ◦ ∂ k ( b m +2 · · · b 1 )# P k ) k � = C ϕ ( σ i ( a u · · · a m +2 ) a 1 · · · a u − 1 ) k , u × ϕ ( b u − 1 · · · b 1 σ i ( b m +2 · · · b u +1 ) · ˆ σ i ◦ ∂ k ( b u )# P k ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  67. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Next for u = 1 , . . . , m + 2 let R u be the matrix will all zero entries except � m +2 [ R u ] i u j u = a u ⊗ b u . Let C = [ A − 1 ] j m +2 i 1 u =1 δ j u = i u +1 and consider � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( R 1 · · · R m +2 ) P k ) k � C ϕ ( a 1 · · · a m +2 ) ϕ ( ¯ = D k ( b m +2 · · · b 1 ) P k ) k � = C ϕ ( a 1 · · · a m +2 ) ϕ (ˆ σ i ◦ ∂ k ( b m +2 · · · b 1 )# P k ) k � = C ϕ ( σ i ( a u · · · a m +2 ) a 1 · · · a u − 1 ) k , u × ϕ ( b u − 1 · · · b 1 σ i ( b m +2 · · · b u +1 ) · ˆ σ i ◦ ∂ k ( b u )# P k ) � φ (∆ (1 , P ) ( R u )( σ i ⊗ σ i )( R u +1 · · · R m +2 ) A − 1 R 1 · · · R u − 1 ) = u Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 24 / 38

  68. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Where for an arbitrary matrix O � [∆ (1 , P ) ( O )] jk = σ i ⊗ (ˆ σ i ◦ ∂ l )([ O ] jk )# 2 P l . l Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 25 / 38

  69. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Where for an arbitrary matrix O � [∆ (1 , P ) ( O )] jk = σ i ⊗ (ˆ σ i ◦ ∂ l )([ O ] jk )# 2 P l . l Replacing R u with B for each u and using ( σ i ⊗ σ i )( B ) A − 1 = A − 1 B turns the previous equation into Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 25 / 38

  70. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Where for an arbitrary matrix O � [∆ (1 , P ) ( O )] jk = σ i ⊗ (ˆ σ i ◦ ∂ l )([ O ] jk )# 2 P l . l Replacing R u with B for each u and using ( σ i ⊗ σ i )( B ) A − 1 = A − 1 B turns the previous equation into � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( B m +2 ) P k ) k � φ (∆ (1 , P ) ( B )( σ i ⊗ σ i )( B m +2 − u ) A − 1 B u − 1 ) = u Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 25 / 38

  71. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Where for an arbitrary matrix O � [∆ (1 , P ) ( O )] jk = σ i ⊗ (ˆ σ i ◦ ∂ l )([ O ] jk )# 2 P l . l Replacing R u with B for each u and using ( σ i ⊗ σ i )( B ) A − 1 = A − 1 B turns the previous equation into � ϕ ( ¯ D k ( ϕ ⊗ 1)Tr A − 1 ( B m +2 ) P k ) k � φ (∆ (1 , P ) ( B )( σ i ⊗ σ i )( B m +2 − u ) A − 1 B u − 1 ) = u = ( m + 2) φ (∆ (1 , P ) ( B ) A − 1 B m +1 ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 25 / 38

  72. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Where for an arbitrary matrix O � [∆ (1 , P ) ( O )] jk = σ i ⊗ (ˆ σ i ◦ ∂ l )([ O ] jk )# 2 P l . l Replacing R u with B for each u and using ( σ i ⊗ σ i )( B ) A − 1 = A − 1 B turns the previous equation into � D ( ϕ ⊗ 1) Tr A − 1 ( B m +2 ) , P � ϕ � φ (∆ (1 , P ) ( B )( σ i ⊗ σ i )( B m +2 − u ) A − 1 B u − 1 ) = u = ( m + 2) φ (∆ (1 , P ) ( B ) A − 1 B m +1 ) Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 25 / 38

  73. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Similarly, D (1 ⊗ ϕ )Tr A ( B m +2 ) , P ϕ = ( m + 2) φ (∆ (2 , P ) ( B ) AB m +1 ) , � � where � [∆ (2 , P ) ( O )] jk = (ˆ σ i ◦ ∂ l ) ⊗ σ − i ([ O ] jk )# 1 P l . l Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 26 / 38

  74. Construction of transport Equivalent forms of Schwinger-Dyson Proof of Lemma 2.1 (conti.) Similarly, D (1 ⊗ ϕ )Tr A ( B m +2 ) , P ϕ = ( m + 2) φ (∆ (2 , P ) ( B ) AB m +1 ) , � � where � [∆ (2 , P ) ( O )] jk = (ˆ σ i ◦ ∂ l ) ⊗ σ − i ([ O ] jk )# 1 P l . l To finish the proof we simply verify that Q P # J σ X − 1 = ∆ (1 , P ) ( B ) A − 1 + ∆ (2 , P ) ( B ) A , which follows from their definitions after decomposing the various derivations as linear combinations of the free difference quotients δ k . Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 26 / 38

  75. Construction of transport Equivalent forms of Schwinger-Dyson Define N ( X i ) = | i | X i Σ( X i ) = 1 | i | X i Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 27 / 38

  76. Construction of transport Equivalent forms of Schwinger-Dyson Recall f = D g , and B = J σ f # J σ X − 1 = J f . Set Q ( g ) = [(1 ⊗ ϕ ) ◦ Tr A + ( ϕ ⊗ 1) ◦ Tr A − 1 ]( B − log(1 + B )) , Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 28 / 38

  77. Construction of transport Equivalent forms of Schwinger-Dyson Recall f = D g , and B = J σ f # J σ X − 1 = J f . Set Q ( g ) = [(1 ⊗ ϕ ) ◦ Tr A + ( ϕ ⊗ 1) ◦ Tr A − 1 ]( B − log(1 + B )) , Then by comparing power series the previous lemma implies � B 2 � B � � D Q ( g ) = B # J ∗ − J ∗ σ ◦ (1 ⊗ σ ) σ ◦ (1 ⊗ σ i ) . 1 + B 1 + B Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 28 / 38

  78. Construction of transport Equivalent forms of Schwinger-Dyson Recall f = D g , and B = J σ f # J σ X − 1 = J f . Set Q ( g ) = [(1 ⊗ ϕ ) ◦ Tr A + ( ϕ ⊗ 1) ◦ Tr A − 1 ]( B − log(1 + B )) , Then by comparing power series the previous lemma implies � B 2 � B � � D Q ( g ) = B # J ∗ − J ∗ σ ◦ (1 ⊗ σ ) σ ◦ (1 ⊗ σ i ) . 1 + B 1 + B Lemma 2.2 Assume f = D g for g = g ∗ ∈ P ( R ,σ ) and � J D g � R ⊗ π R < 1 . Then ϕ equation (3) is equivalent to D { [( ϕ ⊗ 1) ◦ Tr A − 1 + (1 ⊗ ϕ ) ◦ Tr A ]( J D g ) − N g } (5) = D ( W ( X + D g )) + D Q ( g ) + ( J D g )# D g Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 28 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend