monotone dynamical systems a quick tour
play

Monotone Dynamical Systems: A Quick Tour Hal Smith A R I Z O N A S - PowerPoint PPT Presentation

Monotone Dynamical Systems: A Quick Tour Hal Smith A R I Z O N A S T A T E U N I V E R S I T Y H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 1 / 16 Monotone Dynamical System State space: metric space ( X , d ) with a


  1. Monotone Dynamical Systems: A Quick Tour Hal Smith A R I Z O N A S T A T E U N I V E R S I T Y H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 1 / 16

  2. Monotone Dynamical System State space: metric space ( X , d ) with a closed* partial order 1 relation ≤ . *( x n ≤ y n ∧ x n → x ∧ y n → y ⇒ x ≤ y ) Dynamics: discrete-time ( T = Z + ) or continuous-time 2 ( T = R + ) semiflow Φ : T × X → X . Notation Φ t ( x ) = Φ( t , x ) : Φ continuous. Φ 0 = id X t , s ∈ T Φ t ◦ Φ s = Φ t + s , Order-Preserving: x ≤ y ⇒ Φ t ( x ) ≤ Φ t ( y ) , t ∈ T , x , y ∈ X . 3 Trivial Examples: X = R , usual order ≤ , x ′ = f ( x ) , Φ t ( x 0 ) = x ( t , x 0 ) . X = BC ( R , R ) , usual order ≤ , u t = u xx + f ( x , u ) , Φ t ( u 0 ) = u ( t , · ) . X = R , f ր , x ( n + 1 ) = f ( x ( n )) , n ≥ 0 , Φ n ( x ( 0 )) = f ( n ) ( x ( 0 )) . standing assumptions: T = R + . ∀ x ∈ X , { Φ t ( x ) : t ≥ 0 } has compact closure in X . H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 2 / 16

  3. Monotone Dynamical System State space: metric space ( X , d ) with a closed* partial order 1 relation ≤ . *( x n ≤ y n ∧ x n → x ∧ y n → y ⇒ x ≤ y ) Dynamics: discrete-time ( T = Z + ) or continuous-time 2 ( T = R + ) semiflow Φ : T × X → X . Notation Φ t ( x ) = Φ( t , x ) : Φ continuous. Φ 0 = id X t , s ∈ T Φ t ◦ Φ s = Φ t + s , Order-Preserving: x ≤ y ⇒ Φ t ( x ) ≤ Φ t ( y ) , t ∈ T , x , y ∈ X . 3 Trivial Examples: X = R , usual order ≤ , x ′ = f ( x ) , Φ t ( x 0 ) = x ( t , x 0 ) . X = BC ( R , R ) , usual order ≤ , u t = u xx + f ( x , u ) , Φ t ( u 0 ) = u ( t , · ) . X = R , f ր , x ( n + 1 ) = f ( x ( n )) , n ≥ 0 , Φ n ( x ( 0 )) = f ( n ) ( x ( 0 )) . standing assumptions: T = R + . ∀ x ∈ X , { Φ t ( x ) : t ≥ 0 } has compact closure in X . H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 2 / 16

  4. Monotone Dynamical System State space: metric space ( X , d ) with a closed* partial order 1 relation ≤ . *( x n ≤ y n ∧ x n → x ∧ y n → y ⇒ x ≤ y ) Dynamics: discrete-time ( T = Z + ) or continuous-time 2 ( T = R + ) semiflow Φ : T × X → X . Notation Φ t ( x ) = Φ( t , x ) : Φ continuous. Φ 0 = id X t , s ∈ T Φ t ◦ Φ s = Φ t + s , Order-Preserving: x ≤ y ⇒ Φ t ( x ) ≤ Φ t ( y ) , t ∈ T , x , y ∈ X . 3 Trivial Examples: X = R , usual order ≤ , x ′ = f ( x ) , Φ t ( x 0 ) = x ( t , x 0 ) . X = BC ( R , R ) , usual order ≤ , u t = u xx + f ( x , u ) , Φ t ( u 0 ) = u ( t , · ) . X = R , f ր , x ( n + 1 ) = f ( x ( n )) , n ≥ 0 , Φ n ( x ( 0 )) = f ( n ) ( x ( 0 )) . standing assumptions: T = R + . ∀ x ∈ X , { Φ t ( x ) : t ≥ 0 } has compact closure in X . H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 2 / 16

  5. Ordered Banach Space Induces ≤ X ⊂ Y , Y an ordered Banach space with closed positive cone Y + : ( R + ) Y + ⊂ Y + , Y + + Y + ⊂ Y + , ( Y + ) ∩ ( − Y + ) = { 0 } Partial order: y ≤ x ⇔ x − y ∈ Y + Y is strongly ordered if Int Y + � = ∅ . Then y ≪ x ⇔ x − y ∈ Int Y + . Examples: + × ( − R n − k Y = R n , Y + = R k ) , 0 ≤ k ≤ n : + x ≤ y ⇔ ( x i ≤ y i , i ≤ k ) ∧ ( x j ≥ y j , j > k ) Y = L p (Ω , R n ) , C r (Ω , R n ) , f ≤ g ⇔ f ( s ) ≤ g ( s ) , s ∈ Ω H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 3 / 16

  6. Ordered Banach Space Induces ≤ X ⊂ Y , Y an ordered Banach space with closed positive cone Y + : ( R + ) Y + ⊂ Y + , Y + + Y + ⊂ Y + , ( Y + ) ∩ ( − Y + ) = { 0 } Partial order: y ≤ x ⇔ x − y ∈ Y + Y is strongly ordered if Int Y + � = ∅ . Then y ≪ x ⇔ x − y ∈ Int Y + . Examples: + × ( − R n − k Y = R n , Y + = R k ) , 0 ≤ k ≤ n : + x ≤ y ⇔ ( x i ≤ y i , i ≤ k ) ∧ ( x j ≥ y j , j > k ) Y = L p (Ω , R n ) , C r (Ω , R n ) , f ≤ g ⇔ f ( s ) ≤ g ( s ) , s ∈ Ω H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 3 / 16

  7. Ordered Banach Space Induces ≤ X ⊂ Y , Y an ordered Banach space with closed positive cone Y + : ( R + ) Y + ⊂ Y + , Y + + Y + ⊂ Y + , ( Y + ) ∩ ( − Y + ) = { 0 } Partial order: y ≤ x ⇔ x − y ∈ Y + Y is strongly ordered if Int Y + � = ∅ . Then y ≪ x ⇔ x − y ∈ Int Y + . Examples: + × ( − R n − k Y = R n , Y + = R k ) , 0 ≤ k ≤ n : + x ≤ y ⇔ ( x i ≤ y i , i ≤ k ) ∧ ( x j ≥ y j , j > k ) Y = L p (Ω , R n ) , C r (Ω , R n ) , f ≤ g ⇔ f ( s ) ≤ g ( s ) , s ∈ Ω H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 3 / 16

  8. Equilibria, Sub & Super Equilibria: E = { e ∈ X : ∀ t ≥ 0 , Φ t ( e ) = e } Sub-equilibria: E − = { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≥ x } x ∈ E − ⇒ x ≤ Φ s ( x ) ≤ Φ t + s ( x ) , t , s ≥ 0 ∴ Φ t ( x ) ր e ∈ E , t ր ∞ . Super-equilibria: { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≤ x } in applications, these can be identified by the semiflow generator H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 4 / 16

  9. Equilibria, Sub & Super Equilibria: E = { e ∈ X : ∀ t ≥ 0 , Φ t ( e ) = e } Sub-equilibria: E − = { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≥ x } x ∈ E − ⇒ x ≤ Φ s ( x ) ≤ Φ t + s ( x ) , t , s ≥ 0 ∴ Φ t ( x ) ր e ∈ E , t ր ∞ . Super-equilibria: { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≤ x } in applications, these can be identified by the semiflow generator H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 4 / 16

  10. Equilibria, Sub & Super Equilibria: E = { e ∈ X : ∀ t ≥ 0 , Φ t ( e ) = e } Sub-equilibria: E − = { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≥ x } x ∈ E − ⇒ x ≤ Φ s ( x ) ≤ Φ t + s ( x ) , t , s ≥ 0 ∴ Φ t ( x ) ր e ∈ E , t ր ∞ . Super-equilibria: { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≤ x } in applications, these can be identified by the semiflow generator H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 4 / 16

  11. Equilibria, Sub & Super Equilibria: E = { e ∈ X : ∀ t ≥ 0 , Φ t ( e ) = e } Sub-equilibria: E − = { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≥ x } x ∈ E − ⇒ x ≤ Φ s ( x ) ≤ Φ t + s ( x ) , t , s ≥ 0 ∴ Φ t ( x ) ր e ∈ E , t ր ∞ . Super-equilibria: { x ∈ X : ∀ t ≥ 0 , Φ t ( x ) ≤ x } in applications, these can be identified by the semiflow generator H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 4 / 16

  12. Sub & Super Equilibria Bracket Basin x 1 is a sub-equilibrium with Φ t ( x 1 ) ր e ∈ E . Monotonicity implies B = { x ∈ X : x 1 ≤ x ≤ e } ⊂ Basin of attraction of e because it is “sandwiched": Φ t ( x 1 ) ≤ Φ t ( x ) ≤ Φ t ( e ) = e H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 5 / 16

  13. Strong Monotonicity & Limit Set Dichotomy Φ strongly monotone (Hirsch) if Y is strongly ordered and x < y ⇒ Φ t ( x ) ≪ Φ t ( y ) , t > 0 . Φ is strongly order preserving (Matano) (SOP) if it is monotone and x < y ⇒ ∃ nbhds U , V , x ∈ U , y ∈ V , ∃ t 0 ≥ 0 such that Φ t 0 ( U ) ≤ Φ t 0 ( V ) . If x < y then either Theorem[LSD, Hirsch(1982)]: Let Φ be SOP (a) ω ( x ) < ω ( y ) , or (b) ω ( x ) = ω ( y ) ⊂ E ω ( x ) = omega limit set of x H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 6 / 16

  14. Strong Monotonicity & Limit Set Dichotomy Φ strongly monotone (Hirsch) if Y is strongly ordered and x < y ⇒ Φ t ( x ) ≪ Φ t ( y ) , t > 0 . Φ is strongly order preserving (Matano) (SOP) if it is monotone and x < y ⇒ ∃ nbhds U , V , x ∈ U , y ∈ V , ∃ t 0 ≥ 0 such that Φ t 0 ( U ) ≤ Φ t 0 ( V ) . If x < y then either Theorem[LSD, Hirsch(1982)]: Let Φ be SOP (a) ω ( x ) < ω ( y ) , or (b) ω ( x ) = ω ( y ) ⊂ E ω ( x ) = omega limit set of x H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 6 / 16

  15. Generic Convergence Theorem*: Assume X ⊂ Y , Y an ordered Banach space, and X is either convex or the closure of an open set. Let C = { x ∈ X : Φ t ( x ) → e , e ∈ Equilibria } If Φ is SOP on X and some mild smoothness and compactness assumptions hold ( † ), then Int C is dense in X . *Inspired by: M. Hirsch. Systems of differential equations which are competitive or cooperative II: convergence almost everywhere, SIAM J. Math. Anal., 16, 1985. ( † ) ∃ τ > 0: x 1 < x 2 ⇒ Φ τ x 1 ≪ Φ τ x 2 Φ τ is locally C 1 at each e ∈ E , Φ ′ τ ( e ) is Krein-Rutman operator. H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 7 / 16

  16. ODEs-A Canonical Form + × ( − R n − k x ′ = F ( x ) is a monotone system w.r.t. orthant cone R k ) in + domain X if, on permuting variables x = ( x 1 , x 2 ) , x 1 ∈ R k , x 2 ∈ R n − k x ′ f 1 ( x 1 , x 2 ) = 1 x ′ f 2 ( x 1 , x 2 ) = 2 diagonal blocks ∂ f i ∂ x i ( x ) have nonnegative off-diagonal entries. off-diagonal blocks ∂ f i ∂ x j ( x ) ≤ 0 , i � = j have nonpositive entries.   ∗ + − − + ∗ − −   Jacobian =  , + ≥ 0 , − ≤ 0   − − ∗ +  − − + ∗ Components cluster into two subgroups. positive within-group interactions, negative between-group interactions. Strong monotonicity holds if the Jacobian is irreducible at a.e. x ∈ X ! H.L. Smith (ASU) Monotone Dynamical Systems Sontagfest, May 23, 2011 8 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend