fluorescence correlation spectroscopy and f rster
play

Fluorescence Correlation Spectroscopy and Frster Resonance Energy - PowerPoint PPT Presentation

Fluorescence Correlation Spectroscopy and Frster Resonance Energy Transfer Thorsten Wohland Interaction of Light with Matter luminescence Internal Conversion Excited Singlet State S 1 Triplet State T 1 Ground Energy State S 0 VR IC VR


  1. Fluorescence Correlation Spectroscopy and Förster Resonance Energy Transfer Thorsten Wohland

  2. Interaction of Light with Matter luminescence

  3. Internal Conversion Excited Singlet State S 1 Triplet State T 1 Ground Energy State S 0 VR IC VR Absorption Fluorescence VR : vibrational relaxation IC : Internal Conversion

  4. Intersystem Crossing Excited Singlet State S 1 Triplet State T 1 Ground Energy State S 0 VR ISC Photochemical VR reaction Absorption Delayed Phosphorescence Fluorescence Fluorescence VR : vibrational relaxation ISC : Intersystem Crossing

  5. Lifetimes, rate constants, and quantum yield Excitation rate k ex ~I  k nr Lifetime Quantum yield  1        f  k k nr nr

  6. Fluorescence Properties • Wavelength (absorption and emission) • Lifetime (of various states) • Quantum yield • Polarization 6 http://micro.magnet.fsu.edu

  7. F-techniques Fluorescence Anisotropy Fluorescence Lifetime Fluorescence Recovery after Single Particle Tracking Photobleaching 7

  8. Förster Resonance Energy Transfer - FRET 8

  9. The actual formula for the FRET rate orientation       2 9000 ln 10     Q          4 D ( ) k r F d     T D A 6 5 4   r 128 N n D A 0 Note: Formula is now in SI units! Spectral overlap distance environment Donor lifetime 6   1 R R 0 is the so-called Förster radius . It is the    0 k ( r ) distance at which a FRET pair exhibits 50%  T   r FRET. It is a constant for any FRET-pair. D k 6 R   T E 0 E   1   k 6 6 R r D T 0 Förster Distance Calculator

  10. FRET to monitor conformational changes of a virus  Donor: Alexafluor 488 TFP (AF488) labelled protein layer  Acceptor: DiI labelled lipid bilayer Far Donor – Acceptor Near Donor – Acceptor  Low FRET  High FRET  High fluorescence  Lower donor intensity fluorescence  High average donor intensity  Lower average lifetime donor lifetime 10

  11. Lifetime experiment Higher FRET at 25˚C 1 𝜐 𝐸 = 1.0 Γ + 𝑙 𝑜𝑠 + 𝑙 𝑈 0.8 Intensity (a.u.) IRF Trace at 25  C 0.6 Trace at 37  C 1.0 0.4 2x10 5 400 Intensity (kcts) 0.8 0.2 Intensity (cnts) Intensity (cnts) 300 Overall Decay 0.6 0.0 ROI Decay 0 5 10 15 25˚C Fitted Curve 1x10 5 200 Time (ns) IRF 0.4 100 0.2 0.75 0.45  2 (High FRET population)    Low FRET population  0 0 0.0 Intensi 0 30 60 90 120 150 180 0 0 5 5 10 10 15 15 20 20 0.70 0.40 Time (s) Time (ns) Time (ns) 0.65 0.35 1.0 2x10 4 3x10 5 0.60 0.30 Intensity (kcts) 0.8 Intensity (cnts) Intensity (cnts) 0.55 0.25 2x10 5 0.6 ROI Decay 25  C 37  C Overall Decay 37˚C 1x10 4 Fitted Curve Temperature IRF 0.4 1x10 5 3.2 DV2 at 25  C 0.2 DV2 at 37  C 3.0 0 0 0.0 0 30 60 90 120 150 180 0 0 5 5 10 10 15 15 20 20 Time (s) Time (ns) Time (ns)  avg (ns) 2.8 2.6 2.4 2.2 25  C 37  C Temperature 11

  12. Temperature dependence of lipid bilayer-protein coat distance 25 to 37ºC DV2 (NGC) transition vs temperature in absence of MgCl 2 DV2 (NGC) transition vs temperature in absence of MgCl 2 a 1 (low FRET population) 3.6 a 2 (High FRET population) 25  C to 37  C (Donor only) 0.75 3.4 0.40 3.2 0.70 25  C to 37  C  avg (ns) 0.35 37  C to 25  C 3.0 0.65 0.30 2.8 2.6 0.60 0.25 37  C to 25  C (Dual lablelled) 2.4 25  C to 37  C (Dual lablelled) 0.55 0.20 24 26 28 30 32 34 36 38 24 26 28 30 32 34 36 38 Temperature (  C) Temperature (  C) 12

  13. Single particle spectroscopy State 2 State 1 Mg 2 + Imaged under TIRF microscope 13

  14. Single particle spectroscopy Donor Acceptor Donor Acceptor Overlay iSMS 14

  15. Single particle spectroscopy Molecule 1 Molecule 2 Molecule 3 5 Background 7 5 Donor Intensity Donor Donor 6 4 4 5 4 3 3 3 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Time(s) Time(s) Time(s) 7.5 9 7.5 Background Acceptor Acceptor Acceptor Intensity 7.0 7.0 8 6.5 6.5 7 6.0 6.0 6 5.5 5.5 5.0 5 5.0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Time(s) Time(s) Time(s) 1.0 0.6 Acceptor intensity Donor Intensity 0.6 0.8 Overlay 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Time(s) Time(s) Time(s) 1.0 1.0 1.0 0.8 0.8 0.8 E FRET 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Time(s) Time(s) Time(s) 15

  16. Single particle spectroscopy FRET Efficiency population Graph 1600 1400 k21 1200 Observations k12 1000 800 600 400 200 0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 FRET Efficiency (E) 1.0 1.0 1.0 HMM Fitting 0.8 0.8 0.8 E FRET 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Time(s) Time(s) Time(s) Dwell time histogram of HJ from Open to closed state Dwell time histogram of HJ from Closed to open state 2500 1600 2000 1200 Counts Counts n = 29 n = 29 1500 k21 Close  Open = 4.3  0.1 s -1 k21 Open  Closed = 3.4  0.1 s -1 800 1000 400 500 0 0 0 1 2 3 4 0 1 2 3 4 Time(s) Time(s) 16 (ref: Sean A. McKinney1 et. al . 2002)

  17. Summary 1 • FRET can measure distances in the range of ~10 nm • It can be measured either be observing the emission wavelength or best by lifetimes • It can be done in ensembles or on a single molecule level • Here we demonstrated its application to viral conformations and holiday junction dynamics 17

  18. Fluorescence Correlation Spectroscopy (FCS) • What are fluctuations? • What are correlations? • How to calculate correlations? • Fluorescence Correlation Spectroscopy (FCS) • FRET-FCS • Fluorescence Cross-Correlation Spectroscopy (FCCS) • Imaging FCS/FCCS

  19. Fluctuations A + B AB equilibrium kinetics [AB] fluctuations Time fluctuations 19

  20. FCS: General idea • What is a correlation • Predicting the future • Self-similarity

  21. Correlations   a b a b  g 1 Anti-correlation  a b   g g 1 No correlation a b  Correlation g 1 X. Shi and T. Wohland, “ Fluorescence Correlation Spectroscopy ”, in Nanoscopy, CRC Press, 2010

  22. Example B A Probability 0 1 0.25 <A> = 0.5 <B> = 0.5 1 1 0.25 <AB> = 0.25 0 0 0.25 <AB> = 1 <A><B> 1 0 0.25 22

  23. Example B A Probability 0.3 <A> = 0.5 <B> = 0.5 0.2 <AB> = 0.2 0.2 <AB> = 0.8 <A><B> 0.3 23

  24. Example B A Probability 0.1 <A> = 0.5 <B> = 0.5 0.4 <AB> = 0.4 0.4 <AB> = 1.6 <A><B> 0.1 24

  25. Correlations 1. Correlated variables   a b a b a 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0  b     a ; a b 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 b 2 2 2 4 2. Anticorrelated variables   a b a b a 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0  b     a 0 ; a b 1 1 1 b 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 2 2 4 3. Uncorrelated variables   a b a b a 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0  b    1  a a b 1 ; 1 1 b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

  26. Autocorrelations           a t a t a t a t               a t a t a t a t        a t a t     G       a t a t             F t F t F t F t      G     Stationary     2 F t F t F t Processes

  27. Short time shifts               F t F t ? F t F t Blue: F(t) Yellow: F(t+  ) Time F   F                         F F t t t t F F F F t t t t 1 2 3 The intensity peaks always overlap to some extent and thus               F t F t F t F t

  28. Long time shifts               F t F t ? F t F t Blue: F(t) Yellow: F(t+  ) Time F   F                         F F t t t t F F F F t t t t 1 2 3 The intensity trace contains a random pattern of intensity peaks. Therefore an overlap of all/many peaks is only achievable at short times.               F t F t F t F t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend