estimation of pseudo magnetic field for isotropic
play

Estimation of Pseudo Magnetic Field for Isotropic/Anisotropic Dirac - PowerPoint PPT Presentation

2 Nov 2017 @ NQS2017 in YITP Estimation of Pseudo Magnetic Field for Isotropic/Anisotropic Dirac Cones T oshikaze Kariyado MANA, NIMS 2 Nov 2017 arXiv:1707.08601 2 Nov 2017 @ NQS2017 in YITP Motivation & Background Landau levels


  1. 2 Nov 2017 @ NQS2017 in YITP Estimation of Pseudo Magnetic Field for Isotropic/Anisotropic Dirac Cones T oshikaze Kariyado MANA, NIMS 2 Nov 2017 arXiv:1707.08601

  2. 2 Nov 2017 @ NQS2017 in YITP Motivation & Background Landau levels without an external magnetic field. Essence Dirac cones shift as gauge field Any system with Dirac cones! Even for a system inert � k + � A to magnetic field: charge � k neutral particles, photons, phonons...

  3. 2 Nov 2017 @ NQS2017 in YITP Example: Graphene under Strain † Theory: F. Guinea et al. , Nat. Phys. 6 , 30 (2010). Exp.: N. Levy et al. , Science 329 , 544 (2010). b A B 3 a 2 D ( E ) 1 0 –0.2 –0.1 0 0.1 0.2 E (eV)

  4. 2 Nov 2017 @ NQS2017 in YITP Example: Artifitial System K. K. Gomes et al. , Nature 483 , 306 (2012). 2D electrons on Cu surface with arranged molecule deposition 0 0.15 60 Å 60 T 15 Å 0 T 60 T d ˜ ˜ B B B = 60 T g (theory) 45 T ˜ ˜ B = 60 T ˜ B = 60 T 2 nm E D c 1.0 30 T K 60 T 60 T g (experiment) M E D 45 T g (eV –1 nm –2 ) 45 T 0.5 E D ˜ 30 T 30 T 15 T ˜ 15 T 15 T E M ˜ ˜ 0.0 B = 0 T B = 0 T 0 T 5 nm –200 0 200 –200 0 200 –200 0 200 ˜ B V (mV) V (mV) V (mV)

  5. 2 Nov 2017 @ NQS2017 in YITP Quantum Oscillation Strained 3D Weyl semimetal 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 DOS(10meV) 0.02 u max 0.01 a b b 0.00 strain magnetic field σ yy (b)/ σ yy (0) 0.8 continuum B 0.6 x x 0.4 z z y 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -1 ] 1/B, 1/b [T T. Liu, D. I. Pikulin, and M. Franz, Phys. Rev. B 95 , 041201 (2017).

  6. 2 Nov 2017 @ NQS2017 in YITP Valley Imbalance a l r e d o e u p s e a l r

  7. 2 Nov 2017 @ NQS2017 in YITP Valley Imbalance Valley dependent Lorentz force in strained graphene (a) (b) y W R L 0 x A. Chaves et al. , Phys. Rev. B 82 , 205430 (2010).

  8. 2 Nov 2017 @ NQS2017 in YITP Valley Imbalance Landau level splitting in strained graphene (a) 2 b B 2 b B b B b B 0 0 b B b B (b) 2 b B 2 b B 2 D 2 D B. Roy, Z.-X. Hu, and K. Yang, Phys. Rev. B 87 , 121408 (2013).

  9. 2 Nov 2017 @ NQS2017 in YITP T opic 1. Simple setup for pseudo magnetic field generation ◮ not necessary strain 2. Concise formula to estimate pseudo magnetic field ◮ Counting number of “observable” Landau levels ◮ Effects of anisotropy of Dirac cones 3. Application to an exsisting material ◮ 3D Dirac cones in an antiperovskite family

  10. 2 Nov 2017 @ NQS2017 in YITP Setup “Simplest” configuration bulk 1 buffer L “ B ” Δ E layer Δ k y bulk 2 bulk 1 bulk 2  k  z Important Parameters ◮ L : thickness of the buffer layer ◮ Δ k : size of the Dirac cone shift See also, A. G. Grushin et al. , Phys. Rev. X 6 , 041046 (2016). C. Brendel et al. , Proc. Natl. Acad. Sci. USA 114 , 3390 (2017). H. Abbaszadeh et al. , arXiv:1610.06406.

  11. 2 Nov 2017 @ NQS2017 in YITP Formulation H ( ± ) σ ←→ H ( ± ) = ℏ ( −  � = ℏ ( � k ± � ∇ ± � k 0 ) · � k 0 ( y )) · � σ � k ℏ ℏ Δ k h R A ( ± ) = ∓ � � | � B | = | � ∇ × � k 0 ( y ) , A | ∼ = e 2 e e L N 2 πR Δ k = , L = N  bulk 1 buffer L “ B ” Δ E layer Δ k y bulk 2 bulk 1 bulk 2  z k 

  12. 2 Nov 2017 @ NQS2017 in YITP Formulation H ( ± ) σ ←→ H ( ± ) = ℏ ( −  � = ℏ ( � k ± � ∇ ± � k 0 ) · � k 0 ( y )) · � σ � k ℏ ℏ Δ k h R A ( ± ) = ∓ � � | � B | = | � ∇ × � k 0 ( y ) , A | ∼ = e 2 e e L N 2 πR Δ k = , L = N  R : Dirac cone shift, N : buffer thickness bulk 1 buffer L “ B ” Δ E layer Δ k y bulk 2 bulk 1 bulk 2  z k 

  13. 2 Nov 2017 @ NQS2017 in YITP Formulation R : Dirac cone shift, N : buffer thickness ◮ typical case R B | ∼ 1 . 6 × 10 4 × | � [T]  ∼ 5 Å → N ◮ observable Landau levels � π � 4 π 2 ℏ 2 R | n | � ℏ Δ k → | n | < NR E n = < 4 N 2 2 bulk 1 buffer L “ B ” Δ E layer Δ k y bulk 2 bulk 1 bulk 2  z k  ;

  14. 2 Nov 2017 @ NQS2017 in YITP T oy Model H � k = [ 1 + δ + 2 ( cos k  + cos k y )] σ z + 2 α sin k y σ y � 3 [( ˜ k  − ˜ H � k ∼ − δ ) σ z + ˜ αk y σ y ] 2 π δ 2 α ˜ ˜ k  = k  − , δ = , α = ˜ � � 3 3 3 ˜ & ˜ δ ↔ A  α ↔  y / 

  15. 2 Nov 2017 @ NQS2017 in YITP Results R : Dirac cone shift, N : buffer thickness 1.0 0.5 Energy N = 0 N = 10 0.0 π π 4 NR = 0 4 NR ∼ 0 . 8 − 0.5 − 1.0 1.0 0.5 Energy N = 30 N = 50 0.0 π π 4 NR ∼ 2 . 4 4 NR ∼ 3 . 9 − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] k x [2 π / a ] ;

  16. wave function tail hits the boundary no longer Landau level extension of the wave function extension thickness 2 Nov 2017 @ NQS2017 in YITP Discussion bulk2 1.0 0.5 Energy 0.0 buffer − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] bulk1 k 

  17. wave function tail hits the boundary no longer Landau level extension of the wave function extension thickness 2 Nov 2017 @ NQS2017 in YITP Discussion bulk2 1.0 0.5 Energy 0.0 buffer − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] bulk1 k 

  18. wave function tail hits the boundary no longer Landau level extension of the wave function extension thickness 2 Nov 2017 @ NQS2017 in YITP Discussion bulk2 1.0 0.5 Energy 0.0 buffer − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] bulk1 k 

  19. 2 Nov 2017 @ NQS2017 in YITP Discussion bulk2 1.0 0.5 Energy 0.0 buffer − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] bulk1 k  wave function tail hits the boundary → no longer Landau level ◮ extension of the wave function ∼ � n B ∝ � nN/R ◮ extension < thickness → n < NR

  20. 2 Nov 2017 @ NQS2017 in YITP Anisotropy R : Dirac cone shift, N : buffer thickness Δ E = ℏ  Δ k π   � | n | < NR � 4 π   y ℏ 2 R | n | � 4  y E n = N 2 1.0 0.5 Energy N = 50 N = 50 0.0   / y ∼ 2   / y ∼ 0 . 5 − 0.5 − 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 k x [2 π / a ] k x [2 π / a ] Anisotropy is advantageous for observing the LL structure! ;

  21. Dirac Point 2 Nov 2017 @ NQS2017 in YITP Materials TK and M. Ogata, J. Phys. Soc. Jpn. 80 , 083704 (2011). ◮ Antiperovskite A 3 EO (A=Ca,Sr,Ba and E=Sn,Pb) family   O Ca, Sr, Ba  Ca 3d  Sn, Pb  overlap  3D Dirac cones (with tiny Pb 6p  mass) by d-p overlap!  O 2p 3D linear  dispersion  Pb 6s       ;

  22. 2 Nov 2017 @ NQS2017 in YITP Materials TK and M. Ogata, arXiv:1705.08934, to appear in PRMaterials. Band overlap Ca Sr Ba overlap dominant Sn SOC Pb J = 3 SOC 2 dominant J = 1 2 (Potentially) tunable!

  23. 2 Nov 2017 @ NQS2017 in YITP Materials ◮ Ba 3 SnO (band inversion dominant) vs Ca 3 PbO (SOC dominant) Ba 3 SnO Ca 3 PbO 1.0  7  6  7  7  + 7  −  + 8 0.5  6 8  −  6  6  7 Energy (eV) 8  7  − 6  +  7 8 0.0  +  + 7 8  + overlap 8  7  7  6 SOC − 0.5  6  6  −  6 6 − 1.0 X � � X

  24. 2 Nov 2017 @ NQS2017 in YITP Strategy ◮ Inducing Dirac cone shift by modulating chemical composition ◮ Ca 3 SnO ↔ Sr 3 SnO ◮ Estimating R instead of | B pseudo | , to avoid computational burden

  25. 2 Nov 2017 @ NQS2017 in YITP (Quasi) Ab-Initio Estimation: Wannier Interpolation 1. Derive effective models for the two end materials Ca 3 SnO and Sr 3 SnO 2. Interpolate the parameters to obtain a model for Ca 3 ( 1 −  ) Sr 3  SnO x = 4/9 0.4 x = 5/9 Energy (eV) 0.2 0 − 0.2 − 0.4 0 0.05 0.1 0.15 0.2 0.25 k x [2 π / a ]

  26. 2 Nov 2017 @ NQS2017 in YITP (Quasi) Ab-Initio Estimation: Wannier Interpolation 1. Derive effective models for the two end materials Ca 3 SnO and Sr 3 SnO 2. Interpolate the parameters to obtain a model for Ca 3 ( 1 −  ) Sr 3  SnO x = 4/9 0.4 x = 5/9 Energy (eV) 0.2 0 R ∼ 0 . 006 − 0.2 − 0.4 0 0.05 0.1 0.15 0.2 0.25 k x [2 π / a ]

  27. 2 Nov 2017 @ NQS2017 in YITP (Quasi) Ab-Initio Estimation ◮ heterostructure Ca 3 ( 1 −  ) Sr 3  SnO,  = (   = 0 +   = 1 ) / 2 1.0 O Energy (eV) Ca 0.5 k x = 0.092 0.0 x = 4/9 Sr − 0.5 Sn − 1.0 1.0 Energy (eV) 0.5 Sr k x = 0.114 0.0 x = 5/9 Ca − 0.5 − 1.0 0 0.05 0.1 0.15 0.2 0.25 k x [2 π / a ]

  28. 2 Nov 2017 @ NQS2017 in YITP (Quasi) Ab-Initio Estimation ◮ heterostructure Ca 3 ( 1 −  ) Sr 3  SnO,  = (   = 0 +   = 1 ) / 2 1.0 O Energy (eV) Ca 0.5 k x = 0.092 0.0 x = 4/9 Sr − 0.5 Sn − 1.0 R ∼ 0 . 022 1.0 Energy (eV) 0.5 Sr k x = 0.114 0.0 x = 5/9 Ca − 0.5 − 1.0 0 0.05 0.1 0.15 0.2 0.25 k x [2 π / a ]

  29. 2 Nov 2017 @ NQS2017 in YITP Fabrication of Films ◮ Sr 3 PbO, molecular beam epitaxy, thickness 200nm-300nm D. Samal, H. Nakamura, and H. Takagi, APL Mater. 4 , 076101 (2016). ◮ Ca 3 SnO, pulsed laser deposition M. Minohara et al ., arXiv:1710.03406.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend