entanglement negativity in many body quantum systems
play

Entanglement negativity in many-body quantum systems Shinsei Ryu - PowerPoint PPT Presentation

Entanglement negativity in many-body quantum systems Shinsei Ryu with Jonah Kudler-Flam [Jonah Kudler-Flam and SR arXiv:1808.00446 and work in progress] University of Chicago June 17, 2019 1 / 24 Partial transpose and entanglement negativity


  1. Entanglement negativity in many-body quantum systems Shinsei Ryu with Jonah Kudler-Flam [Jonah Kudler-Flam and SR arXiv:1808.00446 and work in progress] University of Chicago June 17, 2019 1 / 24

  2. Partial transpose and entanglement negativity • Partial transpose of a density operator ρ : � e ( A ) e ( B ) | ρ T B | e ( A ) e ( B ) � := � e ( A ) e ( B ) | ρ | e ( A ) e ( B ) � i j k l i l k j where | e ( A,B ) � is the basis of H A,B . i • Entanglement negativity and logarithmic negativity: N ( ρ ) := ( || ρ T B || 1 − 1) / 2 = � | λ i | , λ i < 0 E ( ρ ) := log || ρ T B || 1 = log(2 N ( ρ ) + 1) 2 / 24

  3. Entanglement in mixed states? • How to quantify quantum entanglement between A and B when ρ A ∪ B is mixed ? E.g., finite temperature, A, B are parts of a bigger system. • The entanglement entropy is an entanglement measure only for pure states. For mixed states, it is not monotone under LOCC. • Positive partial transpose (PPT) criterion. [Peres (96), Horodecki-Horodecki-Horodecki (96), Eisert-Plenio (99), Vidal-Werner (02), Plenio (05) ...] 3 / 24

  4. Partial transpose and quantum entanglement • EPR pair: | Ψ � = 1 2 [ | 01 � − | 10 � ] √ ρ = | Ψ �� Ψ | = 1 2[ | 01 �� 01 | + | 10 �� 10 | − | 01 �� 10 | − | 10 �� 01 | ] • Partial transpose: ρ T 2 = 1 2[ | 01 �� 01 | + | 10 �� 10 | − | 00 �� 11 | − | 11 �� 00 | ] • Entangled states are badly affected by partial transpose: Negative eigenvalues: { λ i } = Spec ( ρ T B ) = { 1 / 2 , 1 / 2 , 1 / 2 , − 1 / 2 } • C.f. For a classical state: ρ = 1 2 [ | 00 �� 00 | + | 11 �� 11 | ] = ρ T B 4 / 24

  5. Partial transpose and entanglement negativity • (Logarithmic) Entnglement negativity: | λ i | = ( || ρ T B || 1 − 1) / 2 , � N ( ρ ) := λ i < 0 E ( ρ ) := log(2 N ( ρ ) + 1) = log || ρ T B || 1 . • Quantum entanglement measure for mixed state (monotone under LOCC). • For mixed states, negativity extracts quantum correlations only. • Computable. • Negativity can zero even when the state is entangled (does not detect bound entanglement but only distillable one). 5 / 24

  6. Applications of entanglement negativity to many-body physics? • Entanglement negativity in CFTs, and TFTs [Calabrese-Cardy-Tonni(12-), Castelnovo (13), Lee-Vidal (13), Wen-Chang-SR, Wen-Matsuura-SR(16), and many others...] • Partial transpose and topological invariants in SPT phases [Pollmann-Turner (12),Shapourian-Shiozaki-SR (16)] • Experimental measurements? [Elben et al (18-19); Cornfield et al (18)] 6 / 24

  7. Negativity in 2d CFT • The logarithmic negativity for two adjacent intervals of equal length ℓ in free fermion chain • The numerical result (points) using the free fermion formula [Shapourian-Shiozaki-SR(17)] agrees with the CFT result (solid line) [Calabrese-Cardy-Tonni] . E = c 4 ln tan πℓ L 7 / 24

  8. Partial transpose and topological invariant [Shiozaki-Shapourian-SR (16)] • Topological invariant of 1d topological superconductor (the Kitaev chain) Tr( ρ I ρ T 1 I ) ∼ e 2 πiν/ 8 . (a) D + Refl. 1 . 0 6 Z / ( π / 4 ) BDI Trivial Topological Trivial 0 . 0 (b) 1 . 0 1 p 2 | Z | 1 p 2 2 0 . 0 − 4 − 2 0 2 4 µ / t 8 / 24

  9. Holographic description of entanglement negativity? 9 / 24

  10. Basic proposal Negativity = Minimal entanglement wedge cross section with back reaction [Jonah Kudler-Flam and SR, arXiv:1808.00446] C.f. other proposal [Chaturvedi-Malvimat-Sengupta (16); Jain-Malvimat-Mondal-Sengupta (17)] 10 / 24

  11. Entanglement wedge • Entanglement wedge = the bulk region corresponding to the reduced density matrix on the boundary [Headrick et al (14), Jafferis-Suh (14), Jafferis-Lewkowycz-Maldacena-Suh (15), ...] • Entanglement of purification [Takayanagi-Umemoto(17), Nguyen-Devakul-Halbasch-Zaletel-Swingle (17)] • Odd entropy [Tamaoka (18)] • Reflected entropy [Dutta-Faulkner (19)] 11 / 24

  12. Perfect tensor holographic error correcting code • Tensor network acts as an error correcting code encoding “bulk” logical qubits into “boundary” physical qubits • Captures many aspects of holography; black holes, bulk reconstruction, subregion duality, holographic entanglement entropy, etc. [Almheiri-Dong-Harlow(15), Harlow(17), Pastawski-Yoshida-Harlow-Preskill(15), Hayden et al (16)] 12 / 24

  13. • Computed entanglement negativity in a tensor network model of holographic duality (using the language of QEC). • Entanglement entropy: S ( ρ A ) = S ( χ A ) + S ( ρ a ) • Entanglement negativity: E ( ρ A ¯ A ) = S 1 / 2 ( χ A ) + E ( ρ bulk ) • With BH in bulk, negativity avoids horizon 13 / 24

  14. Full-fledged holography • No back reaction for the von Neumann entropy • Back reaction for R´ enyi entropy • For pure state, negativity = R´ enyi 1/2 • How well do we know about the back reaction? How much control do we have? 14 / 24

  15. R´ enyi entropy and back reaction • R´ enyi entropy S n : [Dong (16)] � n − 1 � n 2 ∂ = Area( cosmic brane n ) S n ∂n n 4 G N Cosmic brane has a tension T n = ( n − 1) / (4 nG N ) • Conjecture: For “spherical” configurations [C.f. Hung-Myers-Smolkin-Yale (11), Rangamani-Rota (14) ] E = X E W 4 G N • For (1+1)d CFT (with spherical entangling surface) X = 3 / 2 , E = 3 E W 2 4 G N 15 / 24

  16. Disjoint intervals at zero temperature • Negativity for two disjoint intervals: • Minimal entanglement wedge cross section E W 6 ln 1 + √ x c 1  1 − √ x, 2 ≤ x ≤ 1  ℓ 1 ℓ 2  E W = x = ( ℓ 1 + d )( ℓ 2 + d ) . 0 ≤ x ≤ 1  0 ,  2 [Takayanagi-Umemoto(17), Nguyen-Devakul-Halbasch-Zaletel-Swingle (17)] 16 / 24

  17. • E W should be compared with n e → 1 ln Tr ( ρ T 2 ) n e E = lim n e → 1 ln � σ n e ( w 1 , ¯ w 4 ) � C . = lim w 1 )¯ σ n e ( w 2 , ¯ w 2 )¯ σ n e ( w 3 , ¯ w 3 ) σ n e ( w 4 , ¯ where σ n is the twist operator with dimension h n = ( c/ 24)( n − 1 /n ) . The replica limit from even integer to n e → 1 . [Calabrese-Cardy-Tonni (12)] 17 / 24

  18. Adjacent limit • In the limit of adjacent intervals d → 0 : � 4 � E W → c ℓ 1 ℓ 2 6 ln . ǫ ( ℓ 1 + ℓ 2 ) • Agrees with CFT result (universal) [Calabrese-Cardy-Tonni (12)] : σ 2 � � E = lim n e =1 ln σ n e ( w 1 , ¯ w 1 )¯ n e ( w 2 , ¯ w 2 ) σ n e ( w 4 , ¯ w 4 ) C � ℓ 1 ℓ 2 � = c 4 ln + const . ℓ 1 + ℓ 2 if the constant is properly chosen, E = (3 / 2) E W . 18 / 24

  19. Disjoint intervals • We need four pt correlation function for the disjoint case: E = lim n e → 1 ln � σ n e ( w 1 , ¯ w 1 )¯ σ n e ( w 2 , ¯ w 2 )¯ σ n e ( w 3 , ¯ w 3 ) σ n e ( w 4 , ¯ w 4 ) � C . • Will focus on the dominant conformal block x ) σ n e (0) � ∼ F ( h p , h i , x ) ¯ � σ n e ( ∞ )¯ F ( h p , h i , ¯ σ n e (1)¯ σ n e ( x, ¯ x ) • Intermediate state is either identity operator of double twist operator σ 2 n with dimension  � � c n 1 − 1 → 0 n : odd  24 n h σ 2 n = � � c n 2 − 2 → − c n : even  12 n 8 19 / 24

  20. Series expansion • Dominant conformal block with double twist operator ( y = 1 − x ): [Headkrick (10), Kulaxizi-Parnachev-Policastro (14)] 2 y + h p ( h p + 1) 2 1 + h p � F ( h p , y ) = y h p 4(2 h p + 1) y 2 h 2 p (1 − h p ) 2 � 2(2 h p + 1)[ c (2 h p + 1) + 2 h p (8 h p − 5)] y 2 + · · · + . • Taking the large c limit and then replica limit h p → − c/ 8 , � � 16 + c 2 y 2 512 − c 3 y 3 1 − cy F ( h p , y ) = y − c 24576 + · · · . 8 Matches with the cross-ratio expansion of (3 / 2) E W in large c . 20 / 24

  21. Monodromy method [Hartman (13), Faulkner (13), Kulaxizi-Parnachev-Policastro (14)] 21 / 24

  22. Geodesic Witten diagram calculation [Hirai-Tamaoka-Yokoya (18), Prudenziati (19)] 22 / 24

  23. • � σ n ( x 1 )¯ σ n ( x 2 )¯ σ n ( x 3 ) σ n ( x 4 ) � � � ∆ σ 2 ∼ G b∂ G b∂ G G b∂ G b∂ n bb γ ij γ kl � � n σ ( y,y ′ ) dλdλ ′ e − ∆ σ 2 ∼ ( | x 12 || x 34 | ) − 2∆ n γ 12 γ 34 where σ ( y, y ′ ) is the distance between bulk points y and y ′ . • In the large c limit, the integral localizes at the minimal entanglement wedge: σ n ( x 3 ) σ n ( x 4 ) � ∼ e − ∆ σ 2 n σ min � σ n ( x 1 )¯ σ n ( x 2 )¯ We then take the replica limit ∆ σ 2 n → − c/ 4 . 23 / 24

  24. A few more comments • Check in other configurations; e.g., bipartite at finite temperatures, thermofield double, etc. • Back reaction for other configurations 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 • Bit thread picture; cross section = maximal number of distillable Bell pairs? on-de Boer-Pedraza(18)] Negativity gives [Ag´ upper bound of distillable entanglement. • Applications; operator negativity. 24 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend