entanglement negativity as a universal non markovianity
play

Entanglement negativity as a universal non-Markovianity witness Jan - PowerPoint PPT Presentation

Entanglement negativity as a universal non-Markovianity witness Jan Koody nski, Swapan Rana, Alexander Streltsov Centre for Quantum Optical Technologies IRAU, Centre of New Technologies, University of Warsaw, Poland Symposium on


  1. Entanglement negativity as a universal non-Markovianity witness Jan Kołody´ nski, Swapan Rana, Alexander Streltsov Centre for Quantum Optical Technologies IRAU, Centre of New Technologies, University of Warsaw, Poland Symposium on Mathematical Physics, Toru´ n June 18, 2019 1 / 18

  2. Outline Witnessing non-Markovianity with contractive functions 1 Witnessing non-Markovianity with entanglement 2 Example: eternally non-Markovian dynamics 3 2 / 18

  3. Outline Witnessing non-Markovianity with contractive functions 1 Witnessing non-Markovianity with entanglement 2 Example: eternally non-Markovian dynamics 3 3 / 18

  4. Witnessing non-Markovianity with contractive functions • Consider two-state function f ( ρ, σ ) such that f (Λ[ ρ ] , Λ[ σ ]) ≤ f ( ρ, σ ) for all CPTP maps and all states ρ , σ 4 / 18

  5. Witnessing non-Markovianity with contractive functions • Consider two-state function f ( ρ, σ ) such that f (Λ[ ρ ] , Λ[ σ ]) ≤ f ( ρ, σ ) for all CPTP maps and all states ρ , σ • Examples: trace distance, quantum relative entropy 4 / 18

  6. Witnessing non-Markovianity with contractive functions • Consider two-state function f ( ρ, σ ) such that f (Λ[ ρ ] , Λ[ σ ]) ≤ f ( ρ, σ ) for all CPTP maps and all states ρ , σ • Examples: trace distance, quantum relative entropy • Markovian dynamics Λ t = V t , s ◦ Λ s lead to monotonic decrease of f for all 0 ≤ s ≤ t : f (Λ t [ ρ ] , Λ t [ σ ]) = f ( V t , s ◦ Λ s [ ρ ] , V t , s ◦ Λ s [ σ ]) ≤ f (Λ s [ ρ ] , Λ s [ σ ]) 4 / 18

  7. Witnessing non-Markovianity with contractive functions • Consider two-state function f ( ρ, σ ) such that f (Λ[ ρ ] , Λ[ σ ]) ≤ f ( ρ, σ ) for all CPTP maps and all states ρ , σ • Examples: trace distance, quantum relative entropy • Markovian dynamics Λ t = V t , s ◦ Λ s lead to monotonic decrease of f for all 0 ≤ s ≤ t : f (Λ t [ ρ ] , Λ t [ σ ]) = f ( V t , s ◦ Λ s [ ρ ] , V t , s ◦ Λ s [ σ ]) ≤ f (Λ s [ ρ ] , Λ s [ σ ]) • Witness of non-Markovianity: d d t f (Λ t [ ρ ] , Λ t [ σ ]) > 0 4 / 18

  8. Witnessing non-Markovianity with contractive functions Consider P-divisible dynamics Λ t = V t , s ◦ Λ t such that V t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 [ ρ T ] (1) 5 / 18

  9. Witnessing non-Markovianity with contractive functions Consider P-divisible dynamics Λ t = V t , s ◦ Λ t such that V t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 [ ρ T ] (1) Theorem: For any non-Markovian evolution Λ t = V t , s ◦ Λ s with V t , s fulfilling Eq. (1) it holds that: d d t f (Λ t [ ρ ] , Λ t [ σ ]) ≤ 0 for any contractive function f ( ρ, σ ) and any single-qubit states ρ and σ . 5 / 18

  10. Witnessing non-Markovianity with contractive functions Consider P-divisible dynamics Λ t = V t , s ◦ Λ t such that V t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 [ ρ T ] (1) Theorem: For any non-Markovian evolution Λ t = V t , s ◦ Λ s with V t , s fulfilling Eq. (1) it holds that: d d t f (Λ t [ ρ ] , Λ t [ σ ]) ≤ 0 for any contractive function f ( ρ, σ ) and any single-qubit states ρ and σ . → contractive functions of two single-qubit states cannot witness all non-Markovianity 5 / 18

  11. Proof of the theorem • For any two single-qubit states ρ and σ there exists a unitary U such that ρ T = U ρ U † , σ T = U σ U † . 6 / 18

  12. Proof of the theorem • For any two single-qubit states ρ and σ there exists a unitary U such that ρ T = U ρ U † , σ T = U σ U † . • ⇒ For any two single-qubit states ρ and σ there exists a CPTP map Φ t , s such that V t , s [ ρ ] = Φ t , s [ ρ ] , V t , s [ σ ] = Φ t , s [ σ ] , where V t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 [ ρ T ] , � U ρ U † � Φ t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 . 6 / 18

  13. Proof of the theorem • For any two single-qubit states ρ and σ there exists a unitary U such that ρ T = U ρ U † , σ T = U σ U † . • ⇒ For any two single-qubit states ρ and σ there exists a CPTP map Φ t , s such that V t , s [ ρ ] = Φ t , s [ ρ ] , V t , s [ σ ] = Φ t , s [ σ ] , where V t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 [ ρ T ] , � U ρ U † � Φ t , s [ ρ ] = p E 1 [ ρ ] + ( 1 − p ) E 2 . • Combining these results, we obtain: f (Λ t [ ρ ] , Λ t [ σ ]) = f ( V t , s ◦ Λ s [ ρ ] , V t , s ◦ Λ s [ σ ]) = f (Φ t , s ◦ Λ s [ ρ ] , Φ t , s ◦ Λ s [ σ ]) ≤ f (Λ s [ ρ ] , Λ s [ σ ]) 6 / 18

  14. Outline Witnessing non-Markovianity with contractive functions 1 Witnessing non-Markovianity with entanglement 2 Example: eternally non-Markovian dynamics 3 7 / 18

  15. Quantifying entanglement a Postulates on entanglement monotones E : a Vedral, Plenio, Rippin, Knight, Phys. Rev. Lett. 78 , 2275 (1997) b Vidal and Werner, Phys. Rev. A 65 , 032314 (2002) 8 / 18

  16. Quantifying entanglement a Postulates on entanglement monotones E : • E A | B ( ρ AB ) ≥ 0 with equality on non-entangled (separable) states ρ AB i p i ρ A i ⊗ ρ B sep = � i a Vedral, Plenio, Rippin, Knight, Phys. Rev. Lett. 78 , 2275 (1997) b Vidal and Werner, Phys. Rev. A 65 , 032314 (2002) 8 / 18

  17. Quantifying entanglement a Postulates on entanglement monotones E : • E A | B ( ρ AB ) ≥ 0 with equality on non-entangled (separable) states ρ AB i p i ρ A i ⊗ ρ B sep = � i • Monotonicity under local operations and classical communication: E A | B (Λ LOCC [ ρ AB ]) ≤ E A | B ( ρ AB ) a Vedral, Plenio, Rippin, Knight, Phys. Rev. Lett. 78 , 2275 (1997) b Vidal and Werner, Phys. Rev. A 65 , 032314 (2002) 8 / 18

  18. Quantifying entanglement a Postulates on entanglement monotones E : • E A | B ( ρ AB ) ≥ 0 with equality on non-entangled (separable) states ρ AB i p i ρ A i ⊗ ρ B sep = � i • Monotonicity under local operations and classical communication: E A | B (Λ LOCC [ ρ AB ]) ≤ E A | B ( ρ AB ) • Entanglement negativity b : E A | B ( ρ AB ) = || ρ T B || 1 − 1 2 √ with trace norm || M || 1 = Tr M † M and partial transpose T B a Vedral, Plenio, Rippin, Knight, Phys. Rev. Lett. 78 , 2275 (1997) b Vidal and Werner, Phys. Rev. A 65 , 032314 (2002) 8 / 18

  19. Witnessing non-Markovianity with entanglement a a Rivas, Huelga, Plenio, Phys. Rev. Lett. 105 , 050403 (2010) b De Santis, Johansson, Bylicka, Bernardes, Acín, PRA 99 , 012303 (2019) 9 / 18

  20. Witnessing non-Markovianity with entanglement a Local Markovian dynamics Λ t = V t , s ◦ Λ s lead to monotonic de- crease of entanglement: E A | B (Λ A t ⊗ 1 B [ ρ AB ]) = E A | B ( V A t , s ◦ Λ A s ⊗ 1 B [ ρ AB ]) ≤ E A | B (Λ A s ⊗ 1 B [ ρ AB ]) for 0 ≤ s ≤ t a Rivas, Huelga, Plenio, Phys. Rev. Lett. 105 , 050403 (2010) b De Santis, Johansson, Bylicka, Bernardes, Acín, PRA 99 , 012303 (2019) 9 / 18

  21. Witnessing non-Markovianity with entanglement a Witness of non-Markovianity a : d d t E A | B (Λ A t ⊗ 1 B [ ρ AB ]) > 0 for some entanglement monotone E and some t a Rivas, Huelga, Plenio, Phys. Rev. Lett. 105 , 050403 (2010) b De Santis, Johansson, Bylicka, Bernardes, Acín, PRA 99 , 012303 (2019) 9 / 18

  22. Witnessing non-Markovianity with entanglement a • Witness not universal b : there exist non-Markovian evolutions with d d t E A | B (Λ A t ⊗ 1 B [ ρ AB ]) ≤ 0 for all t  E t for t ≤ 1  • Example: Λ t =   ˜  E t − 1 ◦ E 1 for t > 1   with Markovian evolution E t s.t. E 1 is entanglement breaking a Rivas, Huelga, Plenio, Phys. Rev. Lett. 105 , 050403 (2010) b De Santis, Johansson, Bylicka, Bernardes, Acín, PRA 99 , 012303 (2019) 9 / 18

  23. Witnessing non-Markovianity with entanglement Extension to tripartite setting: d d t E AB | C (Λ A t ⊗ 1 BC [ ρ ABC ]) > 0 potentially universal witness of non-Markovianity? a Kołody´ nski, Rana, Streltsov, arXiv:1903.08663 10 / 18

  24. Witnessing non-Markovianity with entanglement Extension to tripartite setting: d d t E AB | C (Λ A t ⊗ 1 BC [ ρ ABC ]) > 0 potentially universal witness of non-Markovianity? Theorem a : For any invertible non-Markovian evolution Λ t there exists a quantum state ρ ABC such that d d t E AB | C (Λ A t ⊗ 1 BC [ ρ ABC ]) > 0 for some t > 0 . For single-qubit evolutions the statement also holds for non-invertible dynamics. a Kołody´ nski, Rana, Streltsov, arXiv:1903.08663 10 / 18

  25. Proof of the theorem a • Consider the initial state B 2 C + p 2 ρ AB 1 ρ ABC = p 1 ρ AB 1 ⊗ | Ψ − �� Ψ − | B 2 C ⊗ | Ψ + �� Ψ + | 1 2 √ with | Ψ ± � = ( | 01 � ± | 10 � ) / 2 a Kołody´ nski, Rana, Streltsov, arXiv:1903.08663 11 / 18

  26. Proof of the theorem a • Consider the initial state B 2 C + p 2 ρ AB 1 ρ ABC = p 1 ρ AB 1 ⊗ | Ψ − �� Ψ − | B 2 C ⊗ | Ψ + �� Ψ + | 1 2 √ with | Ψ ± � = ( | 01 � ± | 10 � ) / 2 • The time-evolved state takes the form B 2 C + p 2 Λ A � ρ AB 1 � � ρ AB 1 � ⊗| Ψ − �� Ψ − | B 2 C τ ABC = p 1 Λ A ⊗| Ψ + �� Ψ + | t t t 1 2 a Kołody´ nski, Rana, Streltsov, arXiv:1903.08663 11 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend