certifying non negativity with lasserre s hierarchy and
play

Certifying Non-negativity with Lasserres Hierarchy and Semidefinite - PowerPoint PPT Presentation

Certifying Non-negativity with Lasserres Hierarchy and Semidefinite Programming Victor Magron , LAASCNRS 5 March 2019 Faculty of Mechanical Engineering University of Ljubljana Victor Magron Certifying Non-negativity with Lasserres


  1. Certifying Non-negativity with Lasserre’s Hierarchy and Semidefinite Programming Victor Magron , LAAS–CNRS 5 March 2019 Faculty of Mechanical Engineering University of Ljubljana Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 0 / 40

  2. Introduction V ERIFICATION OF NONLINEAR SYSTEMS . . . SAFETY of critical parts for computing � physical devices Control Software/Hardware Cars x x j x i Space Smart Systems Grids . . . CAST AS C ERTIFIED OPTIMIZATION � S OLVE OFFLINE Input: linear semidefinite polynomial Output: value + numerical/symbolic/formal certificate Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 1 / 40

  3. SDP for Polynomial Optimization NP-hard NON CONVEX Problem p ⋆ = inf p ( x ) Theory (Primal) (Dual) � inf p d µ sup λ µ proba ⇒ ⇐ with p − λ � 0 with INFINITE LP Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 2 / 40

  4. SDP for Polynomial Optimization NP-hard NON CONVEX Problem p ⋆ = inf p ( x ) Practice (Primal Relaxation ) (Dual Strengthening ) � x α d µ p − λ = sum of squares moments finite number ⇒ SDP ⇐ fixed degree L ASSERRE ’ S H IERARCHY of CONVEX P ROBLEMS ↑ p ∗ [Lasserre/Parrilo 01] degree d ⇒ ( n + d = n ) SDP VARIABLES n vars Numeric = ⇒ Approx Certificate Solvers Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 2 / 40

  5. Success Stories: Lasserre’s Hierarchy M ODELING P OWER : Cast as ∞ -dimensional LP over measures S TATIC Polynomial Optimization Optimal Powerflow n ≃ 10 3 [Josz et al 16] Roundoff Error n ≃ 10 2 [Magron et al 17] D YNAMICAL Polynomial Optimization Regions of attraction [Henrion et al 14] Reachable sets [Magron et al 17] △ ! APPROXIMATE O PTIMIZATION B OUNDS ! Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 3 / 40

  6. Success Stories: Certified Optimization Kepler’s Conjecture(1611) √ The max density of sphere packings is π / 18 F lys p ec k : F ormalizing the p roof of K epler by T.Hales (1994) Verification of thousands of “tight” nonlinear inequalities Seminal Paper: Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M., Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of Mathematics, Pi , 5 2017 ∼ 120 citations M Y CONTRIBUTION : (Non)-Polynomial optimization to verify F lys p ec k inequalities Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 4 / 40

  7. Certification Challenges A PPROXIMATE SOLUTIONS sum of squares of a 2 − 2 ab + b 2 ? ( 1.00001 a − 0.99998 b ) 2 ! a 2 − 2 ab + b 2 ≃ ( 1.00001 a − 0.99998 b ) 2 a 2 − 2 ab + b 2 � = 1.0000200001 a 2 − 1.9999799996 ab + 0.9999600004 b 2 → = ? ≃ Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 5 / 40

  8. Certification Challenges S CALABILITY [Joswig et al 16] 20000+ terms, d = 39 , n = 6 2 d 2 1 d 2 2 k 12 1 k 4 5 x 6 1 x 13 9 + 46 d 2 1 d 2 2 k 12 1 k 4 5 x 5 1 x 14 9 + 2 d 2 1 d 2 2 k 11 1 k 5 5 x 5 1 x 14 9 + 46 d 2 1 d 2 2 k 11 1 k 5 5 x 4 1 x 15 9 + 11 d 1 d 2 k 13 1 k 4 5 x 6 1 x 14 9 + 297 d 1 d 2 k 13 1 k 4 5 x 5 1 x 15 9 + 11 d 1 d 2 k 12 1 k 5 5 x 5 1 x 15 9 + 297 d 1 d 2 k 12 1 k 5 5 x 4 1 x 16 9 + 242 k 14 1 k 4 5 x 5 1 x 16 9 + 242 k 13 1 k 5 5 x 4 1 x 17 9 + 2 d 3 1 d 3 2 k 11 1 k 4 5 x 6 1 x 11 9 + 46 d 3 1 d 3 2 k 11 1 k 4 5 x 5 1 x 12 9 + 2 d 3 1 d 3 2 k 10 1 k 5 5 x 5 1 x 12 9 + 46 d 3 1 d 3 2 k 10 1 k 5 5 x 4 1 x 13 9 + 6 d 3 1 d 2 2 k 11 1 k 4 5 x 5 1 x 13 9 + 138 d 3 1 d 2 2 k 11 1 k 4 5 x 4 1 x 14 9 + 4 d 3 1 d 2 2 k 10 1 k 5 5 x 4 1 x 14 9 + 92 d 3 1 d 2 2 k 10 1 k 5 5 x 3 1 x 15 9 + 8 d 2 1 d 3 2 k 11 1 k 4 5 x 6 1 x 12 9 + 184 d 2 1 d 3 2 k 11 1 k 4 5 x 5 1 x 13 9 + 6 d 2 1 d 3 2 k 10 1 k 5 5 x 5 1 x 13 9 + 138 d 2 1 d 3 2 k 10 1 k 5 5 x 4 1 x 14 9 + 2 d 2 1 d 2 2 k 12 1 k 4 5 x 7 1 x 11 9 + 73 d 2 1 d 2 2 k 12 1 k 4 5 x 6 1 x 12 9 + 617 d 2 1 d 2 2 k 12 1 k 4 5 x 5 1 x 13 9 + 2 d 2 1 d 2 2 k 12 1 k 3 5 x 6 1 x 13 9 + 46 d 2 1 d 2 2 k 12 1 k 3 5 x 5 1 x 14 9 + 2 d 2 1 d 2 2 k 11 1 k 5 5 x 6 1 x 12 9 + 73 d 2 1 d 2 2 k 11 1 k 5 5 x 5 1 x 13 9 + 617 d 2 1 d 2 2 k 11 1 k 5 5 x 4 1 x 14 9 + 4 d 2 1 d 2 2 k 11 1 k 4 5 x 5 1 x 14 9 + 92 d 2 1 d 2 2 k 11 1 k 4 5 x 4 1 x 15 9 + 2 d 2 1 d 2 2 k 10 1 k 5 5 x 4 1 x 15 9 + 46 d 2 1 d 2 2 k 10 1 k 5 5 x 3 1 x 16 9 + 45 d 2 1 d 2 k 12 1 k 4 5 x 5 1 x 14 9 + 1215 d 2 1 d 2 k 12 1 k 4 5 x 4 1 x 15 9 + 34 d 2 1 d 2 k 11 1 k 5 5 x 4 1 x 15 9 + 918 d 2 1 d 2 k 11 1 k 5 5 x 3 1 x 16 9 + d 1 d 2 2 k 12 1 k 4 5 x 7 1 x 12 9 + 91 d 1 d 2 2 k 12 1 k 4 5 x 6 1 x 13 9 + 1760 d 1 d 2 2 k 12 1 k 4 5 x 5 1 x 14 9 + d 1 d 2 2 k 11 1 k 5 5 x 6 1 x 13 9 + 80 d 1 d 2 2 k 11 1 k 5 5 x 5 1 x 14 9 + 1463 d 1 d 2 2 k 11 1 k 5 5 x 4 1 x 15 9 + 12 d 1 d 2 k 13 1 k 4 5 x 7 1 x 12 9 + 467 d 1 d 2 k 13 1 k 4 5 x 6 1 x 13 9 + 3575 d 1 d 2 k 13 1 k 4 5 x 5 1 x 14 9 + 11 d 1 d 2 k 13 1 k 3 5 x 6 1 x 14 9 + 297 d 1 d 2 k 13 1 k 3 5 x 5 1 x 15 9 + 12 d 1 d 2 k 12 1 k 5 5 x 6 1 x 13 9 + 467 d 1 d 2 k 12 1 k 5 5 x 5 1 x 14 9 + 3575 d 1 d 2 k 12 1 k 5 5 x 4 1 x 15 9 + 22 d 1 d 2 k 12 1 k 4 5 x 5 1 x 15 9 + 594 d 1 d 2 k 12 1 k 4 5 x 4 1 x 16 9 + 11 d 1 d 2 k 11 1 k 5 5 x 4 1 x 16 9 + 297 d 1 d 2 k 11 1 k 5 5 x 3 1 x 17 9 + 1254 d 1 k 13 1 k 4 5 x 4 1 x 16 9 + 1012 d 1 k 12 1 k 5 5 x 3 1 x 17 9 + + 43 d 2 k 13 1 k 4 5 x 6 1 x 14 9 + 1834 d 2 k 13 1 k 4 5 x 5 1 x 15 9 + 43 d 2 k 12 1 k 5 5 x 5 1 x 15 9 + 1592 d 2 k 12 1 k 5 5 x 4 1 x 16 9 + 286 k 14 1 k 4 5 x 6 1 x 14 9 + 2904 k 14 1 k 4 5 x 5 1 x 15 9 + 242 k 14 1 k 3 5 x 5 1 x 16 9 + 286 k 13 1 k 5 5 x 5 1 x 15 9 + . . . Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 6 / 40

  9. Certification Challenges “In theory, theory and practice are the same. In practice, they are different.” - A. Einstein C ONVERGENCE RATE 1 √ ↑ P RACTICE ? T HEORY c log STAIRS c [Nie-Schweighofer 07] Scientific challenge : bridge THEORY & PRACTICE gap Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 7 / 40

  10. Modeling Challenges Cyber-Physical C ONTROL SYSTEMS Vehicules Collisions Fluid mechanics P ARTIAL D IFFERENTIAL E QUATIONS M IXING D ISCRETE /C ONTINUOUS E QUATIONS  Discrete x t + 1 = f ( x t ) = ⇒ µ T = µ 0 + f # µ  Liouville Transport Continuous x = f ( x ) ˙ = ⇒ µ T = µ 0 + div f µ  Equation Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 8 / 40

  11. Modeling Challenges Cyber-Physical F INITE - PRECISION SOFTWARE / HARDWARE a + ( b + c ) � = ( a + b ) + c Tuned Precision Approx Math Optimize Programs FPGAs Functions P ERFORMANCE A CCURACY VS M IXED P RECISION � Scalability � Loops Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 9 / 40

  12. What is Semidefinite Optimization? Linear Programming (LP): ⊤ z min c z s.t. A z � d . Linear cost c Polyhedron Linear inequalities “ ∑ i A ij z j � d i ” Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 10 / 40

  13. What is Semidefinite Optimization? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0 ” ( F has nonnegative eigenvalues) Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 10 / 40

  14. What is Semidefinite Optimization? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0 ” ( F has nonnegative eigenvalues) Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 10 / 40

  15. Applications of SDP Combinatorial optimization Control theory Matrix completion Unique Games Conjecture (Khot ’02) : “A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems.” (Barak and Steurer survey at ICM’14) Solving polynomial optimization (Lasserre ’01) Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 10 / 40

  16. Lasserre’s Hierarchy Prove polynomial inequalities with SDP: f ( a , b ) : = a 2 − 2 ab + b 2 � 0 . � � � � � � z 1 z 2 a Find z s.t. f ( a , b ) = a b . z 2 z 3 b � �� � � 0 Find z s.t. a 2 − 2 ab + b 2 = z 1 a 2 + 2 z 2 ab + z 3 b 2 ( A z = d ) � z 1 � � 1 � � 0 � � 0 � � 0 � z 2 0 1 0 0 = z 1 + z 2 + z 3 � z 2 z 3 0 0 1 0 0 1 0 0 � �� � � �� � � �� � � �� � F 1 F 2 F 3 F 0 Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 11 / 40

  17. Lasserre’s Hierarchy Choose a cost c e.g. ( 1, 0, 1 ) and solve: ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d . i � 1 � z 1 � � − 1 z 2 Solution = � 0 (eigenvalues 0 and 2) − 1 z 2 z 3 1 � � 1 � � a � − 1 a 2 − 2 ab + b 2 = � = ( a − b ) 2 . a b − 1 b 1 � �� � � 0 Solving SDP = ⇒ Finding S UMS OF S QUARES certificates Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 12 / 40

  18. Lasserre’s Hierarchy NP hard General Problem : f ∗ : = min x ∈ K f ( x ) Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } Victor Magron Certifying Non-negativity with Lasserre’s Hierarchy and SDP 13 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend