investigation of the 1 1 dimensional thirring model using
play

Investigation of the 1+1 dimensional Thirring model using the method - PowerPoint PPT Presentation

Investigation of the 1+1 dimensional Thirring model using the method of matrix product states C.-J. David Lin National Chiao-Tung University, Taiwan In collaboration with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz


  1. Investigation of the 1+1 dimensional Thirring model using the method of matrix product states C.-J. David Lin National Chiao-Tung University, Taiwan In collaboration with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer Kao (National Taiwan Univ.), Yu-Ping Lin (Univ. of Colorado, Boulder), David T.-L. Tan (National Chaio-Tung Univ.) Lattice 2018 East Lansing, MI 26/07/2018

  2. Outline • Preliminaries • Lattice simulations, the MPS and DMRG • Phase structure of the Thirring model • Remarks and outlook

  3. Preliminaries

  4. Motivation • Tensor network for lattice field theory • Topological phase transitions • Real-time dynamics (long-term goal)

  5. The 1+1 dimensional Thirring model and its duality to the sine-Gordon model � ¯ � ψψ − g � � 2 � ψ , ¯ ψ i γ µ ∂ µ ψ − m 0 ¯ ¯ d 2 x � � ψ = ψγ µ ψ S Th 2 strong-weak duality g ↔ κ � 1 � � 2 ∂ µ φ ( x ) ∂ µ φ ( x ) + α 0 d 2 x S SG [ φ ] = κ 2 cos ( κφ ( x )) � 1 � → 1 � φ → φ / κ , and κ 2 = t 2 ∂ µ φ ( x ) ∂ µ φ ( x ) + α 0 cos ( φ ( x )) d 2 x − − − − − − − − − − − − t Works in the zero-charge sector

  6. Dualities and phase structure Thirring sine-Gordon XY 4 π 2 T g − π K − π t The K-T phase transition at T ∼ K π / 2 in the XY model. g ⇠ � π / 2, Coleman’s instability point The phase boundary at t ∼ 8 π in the sine-Gordon theory. The cosine term becomes relevant or irrelevant. Thirring sine-Gordon 1 ¯ � µ 2 ⇡ ✏ µ ν @ ν � Λ ¯ ⇡ cos �

  7. RG flows of the Thirring model dµ = − 64 π m 2 β g ≡ µ dg Λ 2 , dµ = − 2( g + π 2 ) 256 π 3 β m ≡ µdm ( g + π ) 2 Λ 2 m 3 . m − g + π Massless Thirring model is a conformal field theory mass relevant m mass irrelevant g = � π 2 , Coleman’s instability point g

  8. Lattice simulations, the MPS and DMRG

  9. 
 
 Operator formalism and the Hamiltonian Operator formaliam of the Thirring model Hamiltonian 
 • C.R. Hagen, 1967 " # ◆ − 1 � ¯ � ¯ ψψ + g � 2 � g ✓ 1 + 2 g Z � 2 � i ¯ ψγ 1 ∂ 1 ψ + m 0 ¯ ψγ 0 ψ ψγ 1 ψ H Th = dx 4 4 π Staggering, J-W transformation ( ): j ± iS y S ± • j = S x j J. Kogut and L. Susskind, 1975; A. Luther, 1976 N − 2 N − 1 N − 1  � 1 ✓ n + 1 ◆ ✓ n + 1 ◆ ✓ n +1 + 1 ◆ � ¯ X X ( � 1) n X S + n +1 + S + S z S z S z � � H XXZ = ν ( g ) n S − n +1 S − + a ˜ m 0 + ∆ ( g ) n 2 2 2 2 n n n 2 γ m 0 = m 0 ν ( g ) , ∆ ( g ) = cos ( γ ) , with γ = π � g ν ( g ) = π sin( γ ) , ˜ 2 projected to a sector of total spin ! 2 N − 1 H (penalty) ¯ = ¯ X S z H XXZ + λ n � S target XXZ JW-trans of the total fermion number, n =0 Bosonise to topological index in the SG theory.

  10. 
 
 
 
 
 
 Simulation details Matrix product operator for the Hamiltonian 
 • 2 S − 2 λ S z ∆ S z β n S z + α 1 2 × 2 2 S + − 1 1 2 × 2 − 1 0 1 0 0 0 0 0 S − B C S + 0 0 0 0 0 W [ n ] = B C B C S z 0 0 0 1 0 B C B C S z 0 0 0 0 0 @ A 0 0 0 0 0 1 2 × 2 ! 4 + S 2 1 + ∆ β n = ∆ + ( − 1) n ˜ target m 0 a − 2 λ S target , α = λ N 4 Choices of parameters • Twenty values of , ranging from -0.9 to 1.0 ∆ ( g ) (run 1) m 0 a = 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ˜ (run 2) m 0 a = 0 . 005 , 0 . 01 , 0 . 02 , 0 . 03 , 0 . 04 , 0 . 06 , 0 . 08 , 0 . 13 , 0 . 16 ˜ Bond dimension D = 50 , 100 , 200 , 300 , 400 , 500 , 600 System size N = 400 , 600 , 800 , 1000

  11. 6 Convergence of DMRG Start from random tensors at D=50, then go up in D • ⇠ ∆ ( g ) > DMRG converges fast at and • ⇠ � 0 . 7 m 0 a 6 = 0 ˜

  12. Results for the phase structure

  13. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 1 . 4 1 . 6 1 . 3 1 . 2 1 . 4 S N ( n ) S N ( n ) 1 . 1 1 . 2 1 . 0 D = 100 D = 100 1 . 0 0 . 9 D = 200 D = 200 0 . 8 D = 400 D = 400 0 . 8 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 0 ∆ ( g ) = 0 . 0 , ˜ m 0 a = 0 . 0 D = 600 D = 600 0 . 7 0 200 400 600 800 1000 0 200 400 600 800 1000 site n site n ∼ − Calabrese-Cardy scaling observed at all values of for m 0 a = 0 d ∆ ( g ) = 0 ˜

  14. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 0 . 56 1 . 6 0 . 54 0 . 52 1 . 4 0 . 50 S N ( n ) S N ( n ) 1 . 2 0 . 48 1 . 0 0 . 46 D = 100 D = 100 D = 200 D = 200 0 . 8 0 . 44 D = 400 D = 400 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 2 ∆ ( g ) = 0 . 0 , ˜ m 0 a = 0 . 2 D = 600 D = 600 0 . 6 0 . 42 0 200 400 600 800 1000 0 200 400 600 800 1000 site n site n ⇠ � Calabrese-Cardy scaling observed at for m 0 a 6 = 0 ˜ ∆ ( g ) < ⇠ � 0 . 7

  15. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 1 . 6 1 . 4 S N ( n ) 1 . 2 1 . 0 D = 100 D = 200 0 . 8 D = 400 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 2 D = 600 0 . 6 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 � N π sin( π n � 6 ln N ) Central charge is unity in the critical phase

  16. Soliton correlators S. Mandelstam, 1975 ↵ ( x ) ↵ ( y ) = ⌥ i | 2 ⇡ ( x � y ) | − 1 | cµ ( x � y ) | − � 2 g 2 / (2 ⇡ ) 3 † Z y ⇢ � � ( ⇠ ) ⌥ 1 α = ± d ⇠ ˙ � 2 ⇡ i � − 1 2 i � [ � ( y ) � � ( x )] + O ( x � y ) 2 ⇥ : exp : x (35) Vertex operators Soliton operators connecting vortex and anti-vortex Power-law in the critical phase Power-law Exponential-law in the gapped phase Jordan-Wigner m e i ⇡ P n − 1 j = m +1 S z S + j S − transformation n

  17. Soliton correlators + ( r ) ψ + (0) i , ¯ G ( r ) = h ψ † G ( r ) = G ( r ) /G (0) 0 0 m 0 a = 0 . 0 , D = 600 ˜ m 0 a = 0 . 2 , D = 600 ˜ − 2 − 2 − 4 G G ln ¯ ln ¯ − 4 ∆ ( g ) =-0.86 ∆ ( g ) =-0.86 ∆ ( g ) =-0.78 ∆ ( g ) =-0.78 − 6 ∆ ( g ) =-0.74 ∆ ( g ) =-0.74 − 6 ∆ ( g ) =-0.72 ∆ ( g ) =-0.72 − 8 ∆ ( g ) =-0.68 ∆ ( g ) =-0.68 ∆ ( g ) =-0.62 ∆ ( g ) =-0.62 − 8 − 10 0 1 2 3 4 5 0 1 2 3 4 5 ln ( r/a ) ln ( r/a ) Evidence for BKT phase transition

  18. Chiral condensate � � � = 1 � � � h ¯ X � � χ = a ˆ ψψ i ( � 1) n S z � � N n � � � � n m 0 a = 0 . 0 ˜ Extrapolated to infinite D and N m 0 a = 0 . 1 ˜ 0 . 4 m 0 a = 0 . 2 ˜ m 0 a = 0 . 3 ˜ 0 . 3 m 0 a = 0 . 4 ˜ χ ˆ 0 . 2 0 . 1 0 . 0 − 1 . 00 − 0 . 75 − 0 . 50 − 0 . 25 0 . 00 0 . 25 0 . 50 0 . 75 1 . 00 ∆ ( g ) Zero-mass results reproduced using uMPS

  19. Chiral condensate � � � = 1 � � � h ¯ X � � χ = a ˆ ψψ i ( � 1) n S z � � N n � � � � n Extrapolated to infinite D and N chiral symmetry is not spontaneously broken Curvature at small mass in the gapped phase

  20. Mass gap M − 1 � H e ff [ M ] = Π M − 1 . . . Π 0 H Π 0 . . . Π M − 1 = H − E k | Ψ k ⟩⟨ Ψ k | . k =0 ( Π m ) k H k e ff e ff + � M − 1 H k e ff [M]= m =0 E m × | Ψ m ⟩ k e ff m 0 a = 0 . 0 ˜ m 0 a = 0 . 1 ˜ 0 . 8 m 0 a = 0 . 2 ˜ m 0 a = 0 . 3 ˜ 0 . 6 m 0 a = 0 . 4 ˜ E 1 − E 0 0 . 4 0 . 2 0 . 0 − 0 . 8 − 0 . 6 − 0 . 4 − 0 . 2 0 . 0 0 . 2 ∆ ( g )

  21. Phase structure of the Thirring model dµ = − 64 π m 2 β g ≡ µ dg Λ 2 , dµ = − 2( g + π 2 ) 256 π 3 β m ≡ µdm ( g + π ) 2 Λ 2 m 3 . m − g + π Massless Thirring model is a conformal field theory am 0 gapped critical g 0 = 0, continuum limit g 0 = g c , Coleman’s instability point g 0

  22. 
 Conclusion and outlook Evidence for BKT phase transition found using MPS 
 • Chiral symmetry is not spontaneously broken Current work for more detailed probe of the phase structure: 
 • More simulations at small fermion mass Eigenvalue spectrum of the transfer matrix Future projects: • Chemical potential Real-time evolution with a quench

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend