zero temperature phase structure of the 1 1 dimensional
play

Zero-temperature phase structure of the 1+1 dimensional Thirring - PowerPoint PPT Presentation

Zero-temperature phase structure of the 1+1 dimensional Thirring model from matrix product states C.-J. David Lin National Chiao-Tung University, Taiwan with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer


  1. Zero-temperature phase structure of the 1+1 dimensional Thirring model from matrix product states C.-J. David Lin National Chiao-Tung University, Taiwan with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer Kao (National Taiwan Univ.), Yu-Ping Lin (Univ. of Colorado, Boulder), David T.-L. Tan (National Chaio-Tung Univ.) arXiv:1908.04536 (submitted to Phys. Rev. D) RIKEN R-CCS, Kobe, Japan 09/10/2019

  2. Outline • Preliminaries: motivation and introduction • Lattice formulation and the MPS • Simulations and numerical results: 
 Phase structure of the Thirring model • Remarks and outlook (spectrum, real-time dynamics)

  3. Preliminaries

  4. Logic flow Hamiltonian formalism for QFT Quantum spin model MPS & variational method for obtaining the ground state Compute correlators and excited state spectrum

  5. Motivation • New formulation for lattice field theory • No sign problem • Real-time dynamics • Future quantum computers? In this talk: BKT phase transition

  6. The 1+1 dimensional Thirring model � ¯ � � ¯ � g Z h �i S Th [ , ¯ i � µ @ µ � m ¯ ¯ d 2 x � µ ] = � µ 2 Conformality of the massless theory Duality with the sine-Gordon theory

  7. 
 
 Bosonisation and duality • Basic ingredients from free field theories 
 � n � ( µ | x i − x j | ) κ i κ j / 2 π , where � e i κ i φ ( x ) � bare = ( Λ /µ ) − κ 2 i / 4 π � e i κ i φ ( x ) � � � e i κ i φ ( x ) = ren . i =1 i<j ren . And similar power law for ¯ ψψ correlators. Works in the zero-charge sector • The dictionary (zero total fermion number) � µ $ 1 � ¯ � ψψ − g ¯ � � 2 � ψ , ¯ ψ i γ µ ∂ µ ψ − m 0 ¯ ¯ 2 ⇡ ✏ µ ν @ ν � , d 2 x � � = S Th ψ ψγ µ ψ 2 $ Λ ¯ ⇡ cos � , field redifinition, anomaly 4 ⇡ t = 1 + g ⇡ . S SG [ φ ] = 1 � 1 � � d 2 x 2 ∂ µ φ ( x ) ∂ µ φ ( x ) + α 0 cos ( φ ( x )) ↵ 0 t = m 0 Λ t . ⇡ m 0 = m ( µ/ Λ ) g/ ( g + π ) , Coleman: Unstable vacuum at g ∼ − π / 2 ↵ 0 = ↵ ( µ/ Λ ) � t/ 4 π .

  8. Dualities and phase structure Thirring sine-Gordon XY 4 π 2 T g − π K − π t Picture from: K. Huang and J. Polonyi, 1991 The K-T phase transition at T ∼ K π / 2 in the XY model. g ⇠ � π / 2, Coleman’s instability point The phase boundary at t ∼ 8 π in the sine-Gordon theory. The cosine term becomes relevant or irrelevant. Thirring sine-Gordon 1 ¯ � µ 2 ⇡ ✏ µ ν @ ν � Λ ¯ ⇡ cos �

  9. RG flows of the Thirring model Perturbative expansion in mass β g ⌘ µ dg ⇣ m ⌘ 2 dµ = � 64 π , Λ 256 π 3  � 2( g + π 2 ) β m ⌘ µdm ⇣ m ⌘ 2 � dµ = m � ( g + π ) 2 g + π Λ

  10. Lattice formulation and the MPS

  11. 
 
 Operator formalism and the Hamiltonian Operator formaliam of the Thirring model Hamiltonian 
 • C.R. Hagen, 1967 " # ◆ − 1 � ¯ � ¯ ψψ + g � 2 � g ✓ 1 + 2 g Z � 2 � i ¯ ψγ 1 ∂ 1 ψ + m 0 ¯ ψγ 0 ψ ψγ 1 ψ H Th = dx 4 4 π Staggering, J-W transformation ( ): j ± iS y S ± • j = S x j J. Kogut and L. Susskind, 1975; A. Luther, 1976 N − 2 N − 1 N − 1  � 1 ✓ n + 1 ◆ ✓ n + 1 ◆ ✓ n +1 + 1 ◆ � ¯ X X ( � 1) n X S + n +1 + S + S z S z S z � � H XXZ = ν ( g ) n S − n +1 S − + a ˜ m 0 + ∆ ( g ) n 2 2 2 2 n n n 2 γ m 0 = m 0 ν ( g ) , ∆ ( g ) = cos ( γ ) , with γ = π � g ν ( g ) = π sin( γ ) , ˜ 2 projected to a sector of total spin ! 2 N − 1 H (penalty) ¯ = ¯ X S z H XXZ + λ n � S target XXZ JW-trans of the total fermion number, n =0 Bosonise to topological index in the SG theory.

  12. Issue of large Hilbert space & DMRG/MPS S. White, 1992; M.B. Hasting, 2004; F. Verstraeten and I. Cirac, 2006; … | i 2 dim( H ) = O ( d n ) . big: For a spin system of size n and local dimension d , the d d X X | ψ i = c j 1 ,...,j n | j 1 , . . . , j n i = c j 1 ,...,j n | j 1 i ⌦ · · · ⌦ | j n i j 1 ,...,j n =1 j 1 ,...,j n =1 Entanglement-based truncation of the Hilbert space (Area law of the entanglement entropy)

  13. Matrix product states in a nutshell | i 2 d d X X | ψ i = c j 1 ,...,j n | j 1 , . . . , j n i = c j 1 ,...,j n | j 1 i ⌦ · · · ⌦ | j n i j 1 ,...,j n =1 j 1 ,...,j n =1 bers. While Entanglement-based O ( d n ) man argument for choosing D many real (DMRG via MPS) by O ( ndD 2 ) Bond dim xponential in : so . D A (1) α ; j 1 A (2) β , γ ; i 2 . . . A ( n ) ω ; j n = A (1) j 1 A (2) j 2 . . . A ( n ) X c j 1 ,...,j n = j n , α ,..., ω =1

  14. Matrix Product Operator ⇣ ⌘ b l − 1 X ˆ A i ˆ ˆ B i +1 + ˆ B i ˆ O = A i +1 i ˆ = ˆ A ⊗ ˆ B ⊗ 1 ⊗ · · · ⊗ 1 b l − 1 + 1 ⊗ ˆ A ⊗ ˆ B ⊗ 1 ⊗ · · · ⊗ 1 + · · · + ˆ B ⊗ ˆ A ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ ˆ B ⊗ ˆ A ⊗ 1 ⊗ · · · ⊗ 1 + · · · σ L − 1 , σ ′ M σ 1 , σ ′ 1 ,b 1 M σ 2 , σ ′ b 1 ,b 2 M σ 3 , σ ′ b L − 3 ,b L − 1 M σ L , σ ′ ˆ � L − 1 O = b 2 ,b 3 . . . M L 1 2 3 b L − 1 , 1 b 1 ,...,b L − 1 σ 1 σ σ L σ 1 σ σ L b 1 b - 1 b b L -1 σ ´ 1 σ ´ σ ´ L σ ´ 1 σ ´ σ ´ L matrix elements It is simple to compute local operator matrix elements with canonical states.

  15. 
 
 
 
 
 
 
 Simulation details for the phase structure Matrix product operator for the Hamiltonian (bulk) 
 • 2 S − 2 λ S z ∆ S z β n S z + α 1 2 × 2 2 S + − 1 1 2 × 2 − 1 0 1 0 0 0 0 0 S − B C S + 0 0 0 0 0 B C W [ n ] = B C S z 0 0 0 1 0 B C B C S z 0 0 0 0 0 @ A 0 0 0 0 0 1 2 × 2 ! 4 + S 2 1 + ∆ β n = ∆ + ( − 1) n ˜ target m 0 a − 2 λ S target , α = λ N 4 Simulation parameters • Twenty values of , ranging from -0.9 to 1.0 ∆ ( g ) Fourteen values of , ranging from 0 to 0.4 m 0 a ˜ Bond dimension D = 50 , 100 , 200 , 300 , 400 , 500 , 600 System size N = 400 , 600 , 800 , 1000

  16. Practice of MPS for DMRG a -1 a σ L σ ´ a -1 ´ a ´ One step in a sweep of finite-size DMRG

  17. Simulations and numerical results

  18. 6 Convergence of DMRG Start from random tensors at D=50, then go up in D • ⇠ DMRG converges fast at and ∆ ( g ) > • m 0 a 6 = 0 ˜ ⇠ � 0 . 7

  19. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 1 . 4 1 . 6 1 . 3 1 . 2 1 . 4 S N ( n ) S N ( n ) 1 . 1 1 . 2 1 . 0 D = 100 D = 100 1 . 0 0 . 9 D = 200 D = 200 0 . 8 D = 400 D = 400 0 . 8 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 0 ∆ ( g ) = 0 . 0 , ˜ m 0 a = 0 . 0 D = 600 D = 600 0 . 7 0 200 400 600 800 1000 0 200 400 600 800 1000 site n site n ∼ − Calabrese-Cardy scaling observed at all values of for m 0 a = 0 d ∆ ( g ) = 0 ˜

  20. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 0 . 505 1 . 0 0 . 500 1 . 6 0 . 495 0 . 9 1 . 4 0 . 490 S N ( n ) S N ( n ) S N ( n ) 1 . 2 0 . 485 0 . 8 1 . 0 0 . 480 D = 100 D = 100 D = 100 0 . 7 0 . 475 D = 200 D = 200 D = 200 0 . 8 D = 400 D = 400 D = 400 0 . 470 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 2 ∆ ( g ) = − 0 . 7 , ˜ m 0 a = 0 . 2 ∆ ( g ) = 0 . 0 , ˜ m 0 a = 0 . 2 D = 600 D = 600 D = 600 0 . 6 0 . 6 0 . 465 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 site n site n site n ⇠ � Calabrese-Cardy scaling observed at for m 0 a 6 = 0 ˜ ∆ ( g ) < ⇠ � 0 . 7

  21. Entanglement entropy Calabrese-Cardy scaling and the central charge  N ⌘� S N ( n ) = c ⇣ π n 6 ln π sin + k , N 1 . 6 1 . 4 S N ( n ) 1 . 2 1 . 0 D = 100 D = 200 0 . 8 D = 400 ∆ ( g ) = − 0 . 88 , ˜ m 0 a = 0 . 2 D = 600 0 . 6 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 � N π sin( π n � 6 ln N ) Central charge is unity in the critical phase

  22. Density-density correlators 1 S z ( n ) S z ( n + x ) � 1 JW trans C zz ( x ) = h ¯ ψψ ( x 0 + x ) ¯ X X X ψψ ( x 0 ) i conn � � � � � � ! S z ( n ) S z ( n + 1) N x N 0 n n n try fitting to zz ( x ) = β x α and C pow C pow − exp ( x ) = Bx η A x zz 1.1 pow fit α -1 C zz ma=0.005 fitted values of A pow-exp fit η C zz ma=0.02 ma=0.08 1.05 -1.5 ma=0.3 1 -2 the parameter α and η fo rs: N = 1000, ˜ m 0 a = 0 . 02. 0.95 -2.5 0.9 -3 0.85 -3.5 -4 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 ∆ (g) ∆ (g) Evidence for a critical phase

  23. Soliton correlators S. Mandelstam, 1975; E. Witten, 1978 ↵ ( x ) ↵ ( y ) = ⌥ i | 2 ⇡ ( x � y ) | − 1 | cµ ( x � y ) | − � 2 g 2 / (2 ⇡ ) 3 † Z y ⇢ � � ( ⇠ ) ⌥ 1 α = ± d ⇠ ˙ � 2 ⇡ i � − 1 2 i � [ � ( y ) � � ( x )] + O ( x � y ) 2 ⇥ : exp : x (35) Vertex operators Soliton operators connecting vortex and anti-vortex Power-law in the critical phase Power-law Exponential-law in the gapped phase Jordan-Wigner m e i ⇡ P n − 1 j = m +1 S z S + j S − transformation n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend