heavy vector t riplets bridging theory and data
play

Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm - PowerPoint PPT Presentation

Benasque, 17 April 2014 Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm cole Polytechnique Fdrale de Lausanne in collaboration with D. Pappadopulo, R. Torre, A. Wulzer based on arXiv:1402.4431 Outline 1. Motivations


  1. Benasque, 17 April 2014 Heavy Vector T riplets: Bridging Theory and Data Andrea Thamm École Polytechnique Fédérale de Lausanne in collaboration with D. Pappadopulo, R. Torre, A. Wulzer � based on arXiv:1402.4431 �

  2. Outline 1. Motivations � 2. Simple Simplified Model � 3. Limit setting procedure � 4. Data and Bounds � 5. Conclusions Andrea Thamm 3 �

  3. Motivation Andrea Thamm 3 �

  4. c ( ⃗ p ) L ( ⃗ c ) ⃗ Theory y Data y L s Motivation ✤ indirect probes of new physics very important � ✤ at LHC also many direct probes, for example: SPIN 1 Weakly coupled Strongly coupled Z’ models, 
 Composite Higgs models sequential W’ ,… very difficult to reinterpret ✤ aim: phenomenological Lagrangian for heavy spin-1 resonances 
 to bridge between experimental data and theoretical models � ✤ idea: � present bounds in terms of simplified model parameters � any model can be matched to simplified Lagrangian

  5. A Simple Simplified Model Andrea Thamm 3 �

  6. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν

  7. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν

  8. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g 2 c F ∼ g V c H g V V µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  9. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Couplings among Vectors � ✤ do not contribute to V decays � ✤ do not contribute to single production � ✤ only effects through (usually small) VW mixing � � irrelevant for phenomenology only need ( c H , c F )

  10. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a V µ V µ a V + , V − , V 0 � � L V = V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Weakly coupled model Strongly coupled model typical strength of V interactions g V g V ≤ 4 π g V ∼ g ∼ 1 dimensionless coefficients c i c H ∼ − g 2 /g 2 c F ∼ 1 and c H ∼ c F ∼ 1 V

  11. Production Rates ✤ DY and VBF production � � 4 π 2 Γ V → ij dL ij 48 π 2 dL W L i W L j Γ V → W L i W L j � � X X σ DY = � σ V BF = � M V d ˆ s 3 � M V d ˆ s � � i,j ∈ p s = M 2 � ˆ i,j ∈ p s = M 2 ˆ V V model 
 model 
 dependent independent ✤ can compute production rates analytically! � ✤ easily rescale to different points in parameter space � ✤ VBF subleading in motivated part of parameter space 10 4 10 0 10 - 1 W L + Z L H V + L 10 3 u i d j H V + L - H V 0 L 10 - 2 + W L u i u j H V 0 L W L 10 2 10 - 3 - Z L H V - L W L d i d j H V 0 L 10 1 10 - 4 d i u j H V - L 10 0 10 - 5 ` @ pb D ` @ pb D 10 - 1 10 - 6 dL ê d s dL ê d s 10 - 7 10 - 2 10 - 8 10 - 3 10 - 9 10 - 4 8 TeV 8 TeV 10 - 10 10 - 5 10 - 11 10 - 6 CTEQ6L1 H m 2 = s ` L 2 L 10 - 12 CTEQ6L1 H m 2 = M W 10 - 13 10 - 7 0 1 2 3 4 5 0 1 2 3 4 5 ` = M V @ TeV D ` = M V @ TeV D s s

  12. Decay widths ✤ relevant decay channels: di-lepton, di-quark, di-boson ◆ 2 M V ✓ g 2 c F 0 ' 2 Γ V 0 → ff ' N c [ f ] Γ V ± → ff 96 π , g V ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → W + Γ V ± → W ± ' L W − L Z L 192 π L ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → Z L h Γ V ± → W ± ' L h 192 π Weakly coupled model Strongly coupled model g V c H ' g 2 c F /g V ' g 2 /g V g 2 c F /g V ' g 2 /g V g V c H ' � g V , 0.12 è W + W - ll è 0.10 W + W - ll Zh 10 - 1 nn Zh BR H V 0 Æ 2 X L BR H V 0 Æ 2 X L nn uu bb 0.08 Model A uu bb Model B è tt dd è tt dd 0.06 10 - 2 g V = 1 0.04 10 - 3 0.02 g V = 3 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 M 0 @ GeV D M 0 @ GeV D

  13. Data and Bounds Andrea Thamm 3 �

  14. SM s SM H pp Æ l + l - L Limit setting Signal only s H pp Æ V 0 Æ l + l - L Signal BW s H pp Æ V 0 L â BR H V 0 Æ l + l - L SM + Signal H w ê o interference L s H pp Æ V 0 Æ l + l - L + s SM H pp Æ l + l - L SM + BW H w ê o interference L s H pp Æ V 0 L â BR H V 0 Æ l + l - L + s SM H pp Æ l + l - L Effect of interference - 1 < y < 1 ✤ want limits on since model-independent � σ × BR ✤ must stay in a window around the peak, 
 otherwise finite widths effects must be considered Di-lepton searches for V 0 0 LHC û 8TeV LHC û 8TeV 4 - 5 1 -s Full ê s BW H % L M V = 2 TeV M V = 3.5 TeV 8 G ê M V = 10 % - 10 G ê M V = 11 % d s ê dM l + l - @ 10 - 7 pb ê GeV D d s ê dM l + l - @ 10 - 7 pb ê GeV D - 15 3 - 20 6 - 1.0 - 0.5 0.0 0.5 1.0 20 y 10 1 -s Full ê s BW H % L 2 4 0 - 10 - 20 1 - 1.0 - 0.5 0.0 0.5 1.0 2 y 2 → 2 0 1200 1400 1600 1800 2000 2200 2600 2800 3000 3200 3400 3600 3800 M l + l - @ GeV D M l + l - @ GeV D BW 1. distortion from Breit-Wigner 
 due to steep fall of parton luminosities at large energies ✤ large distortion for non-negligible widths � ✤ still under control in window around the peak � [ M − Γ , M + Γ ] ✤ but large tail [Accomando, Becciolini, Balyaev, Moretti, Shepherd, arXiv:1304.6700 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arXiv:1110.0713]

  15. SM s SM H pp Æ l + l - L Limit setting Signal only s H pp Æ V 0 Æ l + l - L Signal BW s H pp Æ V 0 L â BR H V 0 Æ l + l - L SM + Signal H w ê o interference L s H pp Æ V 0 Æ l + l - L + s SM H pp Æ l + l - L SM + BW H w ê o interference L s H pp Æ V 0 L â BR H V 0 Æ l + l - L + s SM H pp Æ l + l - L Effect of interference - 1 < y < 1 ✤ want limits on since model-independent � σ × BR ✤ must stay in a window around the peak, 
 otherwise finite widths effects must be considered Di-lepton searches for V 0 constructive 0 LHC û 8TeV LHC û 8TeV 4 - 5 1 -s Full ê s BW H % L M V = 2 TeV M V = 3.5 TeV 8 G ê M V = 10 % - 10 G ê M V = 11 % d s ê dM l + l - @ 10 - 7 pb ê GeV D d s ê dM l + l - @ 10 - 7 pb ê GeV D - 15 3 - 20 6 - 1.0 - 0.5 0.0 0.5 1.0 20 y 10 1 -s Full ê s BW H % L 2 4 0 - 10 - 20 1 - 1.0 - 0.5 0.0 0.5 1.0 2 y 0 1200 1400 1600 1800 2000 2200 2600 2800 3000 3200 3400 3600 3800 M l + l - @ GeV D M l + l - @ GeV D background destructive 2. interference with SM background ✤ depends on S/B ratio � ✤ can be a large effect � ✤ tail strongly model dependent, not σ × BR [Accomando, Becciolini, Balyaev, Moretti, Shepherd, arXiv:1304.6700 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arXiv:1110.0713]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend