multipartite entanglement certification in quantum many
play

Multipartite entanglement certification in quantum many-body systems - PowerPoint PPT Presentation

Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite entanglement certification in quantum many-body systems using quench dynamics Ricardo Costa de Almeida Institute for


  1. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite entanglement certification in quantum many-body systems using quench dynamics Ricardo Costa de Almeida Institute for Theoretical Physics Heidelberg University Department of Physics University of Trento Cold Quantum Coffee - 19/11/2019

  2. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Contents Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model

  3. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model

  4. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Phase Estimation

  5. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Phase Estimation Goal: estimate a parameter θ =?

  6. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Phase Estimation Goal: estimate a parameter θ =? Tools: measurements of a quantum state ρ ( θ ) = e − i θ O ρ 0 e + i θ O

  7. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Phase Estimation Goal: estimate a parameter θ =? Tools: measurements of a quantum state ρ ( θ ) = e − i θ O ρ 0 e + i θ O How precise can this estimation be?

  8. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Cram´ er-Rao Bound

  9. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Cram´ er-Rao Bound Conditional probability distribution: f ( µ | θ )

  10. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Cram´ er-Rao Bound Conditional probability distribution: f ( µ | θ ) Calculating θ from outcomes of µ yields an estimator θ = ˆ ˆ θ ( µ )

  11. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Cram´ er-Rao Bound Conditional probability distribution: f ( µ | θ ) Calculating θ from outcomes of µ yields an estimator θ = ˆ ˆ θ ( µ ) Fisher information: � F = f ( µ | θ ) ( ∂ θ ln f ( µ | θ )) µ

  12. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Cram´ er-Rao Bound Conditional probability distribution: f ( µ | θ ) Calculating θ from outcomes of µ yields an estimator θ = ˆ ˆ θ ( µ ) Fisher information: � F = f ( µ | θ ) ( ∂ θ ln f ( µ | θ )) µ Bound on the precision of any estimator: Var (ˆ θ ) ≥ F − 1

  13. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound

  14. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O

  15. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O Given some measurement setup: POVM { E µ }

  16. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O Given some measurement setup: POVM { E µ } ⇒ f ( µ | θ ) = Tr ( ρ ( θ ) E µ )

  17. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O Given some measurement setup: POVM { E µ } ⇒ f ( µ | θ ) = Tr ( ρ ( θ ) E µ ) ⇒ F ( { E µ } )

  18. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O Given some measurement setup: POVM { E µ } ⇒ f ( µ | θ ) = Tr ( ρ ( θ ) E µ ) ⇒ F ( { E µ } ) Quantum Fisher information: F Q = max { E µ } F ( { E µ } )

  19. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Quantum Cram´ er-Rao Bound Parameter-dependent quantum state: ρ ( θ ) = e − i θ O ρ 0 e + i θ O Given some measurement setup: POVM { E µ } ⇒ f ( µ | θ ) = Tr ( ρ ( θ ) E µ ) ⇒ F ( { E µ } ) Quantum Fisher information: F Q = max { E µ } F ( { E µ } ) Best precision achievable with ρ 0 : Var (ˆ θ ) ≥ F − 1 Q

  20. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model How to Calculate the QFI?

  21. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model How to Calculate the QFI? Pure states ρ 0 = | ψ � � ψ | :

  22. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model How to Calculate the QFI? Pure states ρ 0 = | ψ � � ψ | : � � ψ | O 2 | ψ � − � ψ | O | ψ � 2 � F Q = 4Var ( O , ψ ) = 4

  23. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model How to Calculate the QFI? Pure states ρ 0 = | ψ � � ψ | : � � ψ | O 2 | ψ � − � ψ | O | ψ � 2 � F Q = 4Var ( O , ψ ) = 4 Mixed states ρ 0 = � λ ρ λ | λ � � λ | :

  24. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model How to Calculate the QFI? Pure states ρ 0 = | ψ � � ψ | : � � ψ | O 2 | ψ � − � ψ | O | ψ � 2 � F Q = 4Var ( O , ψ ) = 4 Mixed states ρ 0 = � λ ρ λ | λ � � λ | : ρ λ − ρ λ ′ ρ λ + ρ λ ′ ( ρ λ − ρ λ ′ ) | � λ | O | λ ′ � | 2 , � F Q = 2 λ,λ ′

  25. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model

  26. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite Entanglement

  27. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite Entanglement System of N spins 1/2 | ψ � ∈ H 1 ⊗ · · · ⊗ H N

  28. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite Entanglement System of N spins 1/2 | ψ � ∈ H 1 ⊗ · · · ⊗ H N Product states: | ψ � = | φ 1 � ⊗ · · · ⊗ | φ N �

  29. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite Entanglement System of N spins 1/2 | ψ � ∈ H 1 ⊗ · · · ⊗ H N Product states: | ψ � = | φ 1 � ⊗ · · · ⊗ | φ N � k-producible states: | ψ � = | ψ i 1 � ⊗ · · · ⊗ | ψ i P � where each | ψ i p � is a state of at most k spins

  30. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model Multipartite Entanglement System of N spins 1/2 | ψ � ∈ H 1 ⊗ · · · ⊗ H N Product states: | ψ � = | φ 1 � ⊗ · · · ⊗ | φ N � k-producible states: | ψ � = | ψ i 1 � ⊗ · · · ⊗ | ψ i P � where each | ψ i p � is a state of at most k spins ◮ Entangled states � = product states ◮ k-partite entangled states � = k-producible states

  31. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model QFI as an Entanglement Witness

  32. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model QFI as an Entanglement Witness For a k-producible state | ψ � = | ψ i 1 � ⊗ · · · ⊗ | ψ i P � and O = � j O j : � Var ( O , ψ ) = Var ( O i p , ψ i p ) i p

  33. Background in Quantum Metrology Multipartite Entanglement Certification Quench Dynamics 1D Fermi-Hubbard Model QFI as an Entanglement Witness For a k-producible state | ψ � = | ψ i 1 � ⊗ · · · ⊗ | ψ i P � and O = � j O j : � Var ( O , ψ ) = Var ( O i p , ψ i p ) i p This leads to bounds for the F Q of k-producible states: F Q ≤ kN for O = 1 � σ z j 2 j

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend