geometry of statistical submanifolds
play

Geometry of statistical submanifolds FURUHATA Hitoshi (Hokkaido - PowerPoint PPT Presentation

Geometry of statistical submanifolds FURUHATA Hitoshi (Hokkaido University) PADGE2012 Contents 1. What is a statistical manifold ? Basic Definitions and Examples 2. Spaces of constant Hessian curvature zero Elementary Submanifold


  1. Geometry of statistical submanifolds FURUHATA Hitoshi (Hokkaido University) PADGE2012

  2. Contents 1. What is a statistical manifold ? — Basic Definitions and Examples 2. Spaces of constant Hessian curvature zero — Elementary Submanifold Theory 3. Spaces of nonzero constant Hessian curvature — Problems References . Furuhata H. and Kurose T., Hessian manifolds of nonpositive constant Hessian sectional curvature , To appear in Tohoku Math. J. Furuhata H., Statistical hypersurfaces in the space of Hessian curvature zero , Differential Geom. Appl. 29(2011), S86–S90. Furuhata H., Hypersurfaces in statistical manifolds , Differential Geom. Appl. 27(2009), 420–429. 1

  3. What is a statistical manifold ? M : C ∞ manifold ∇ : torsion-free affine connection on M , g : Riemannian metric on M Definition . ( ∇ , g ) is a statistical structure on M def ⇒ ∇ g ∈ Γ( TM (0 , 3) ) is symmetric, ⇐ i.e. ( ∇ X g )( Y, Z ) = ( ∇ Y g )( X, Z ) , ∀ X, Y, Z ∈ Γ( TM ) . Definition . ( M, ∇ , g ) , ( � M, � ∇ , � g ) : statistical manifolds (1) f : M → � M is a statistical immersion def g ( � ⇒ g = f ∗ � ⇐ g and g ( ∇ X Y, Z ) = � ∇ X f ∗ Y, f ∗ Z ) , ∀ X, Y, Z ∈ Γ( TM ) . (2) ( M, ∇ , g ) = ( � M, � ∇ , � g ) def ⇒ ∃ f : ( M, ∇ , g ) → ( � M, � ⇐ ∇ , � g ) : bijective statistical immersion 2

  4. What is a statistical manifold ? M : C ∞ manifold ∇ : torsion-free affine connection on M , g : Riemannian metric on M Definition . ( ∇ , g ) is a statistical structure on M def ⇒ ∇ g ∈ Γ( TM (0 , 3) ) is symmetric, ⇐ i.e. ( ∇ X g )( Y, Z ) = ( ∇ Y g )( X, Z ) , ∀ X, Y, Z ∈ Γ( TM ) . Definition . ( M, ∇ , g ) , ( � M, � ∇ , � g ) : statistical manifolds (1) f : M → � M is a statistical immersion def g ( � ⇒ g = f ∗ � ⇐ g and g ( ∇ X Y, Z ) = � ∇ X f ∗ Y, f ∗ Z ) , ∀ X, Y, Z ∈ Γ( TM ) . (2) ( M, ∇ , g ) = ( � M, � ∇ , � g ) def ⇒ ∃ f : ( M, ∇ , g ) → ( � M, � ⇐ ∇ , � g ) : bijective statistical immersion 2

  5. Definition (cont.) (3) f : ( M, ∇ , g ) → ( � M, � ∇ , � g ) : statistical hypersurface ξ ∈ Γ( f − 1 T � M ) : unit normal vector field of f Define h ∈ Γ( TM (0 , 2) ) , A ∗ ∈ Γ( TM (1 , 1) ) , τ ∗ ∈ Γ( TM (0 , 1) ) by � ∇ X f ∗ Y = f ∗ ∇ X Y + h ( X, Y ) ξ, � ∇ X ξ = − f ∗ A ∗ X + τ ∗ ( X ) ξ, ∀ X, Y ∈ Γ( TM ) . Remark . f : M → ( � M, � ∇ , � g ) : immersion g ( � Set g := f ∗ � g and ∇ by g ( ∇ X Y, Z ) = � ∇ X f ∗ Y, f ∗ Z ) . Then ( ∇ , g ) is called a statistical structure induced by f . 3

  6. Notation . (1) ∇ g : Levi-Civita connection of g (2) K := K ( ∇ ,g ) := ∇ − ∇ g ∈ Γ( TM (1 , 2) ) Example . ( M, g ) : Riemannian manifold ⇒ ( ∇ g , g ) is a statistical structure on M with K = 0 . = Remark . f : M → ( � M, � ∇ , � g ) : immersion ( ∇ , g ) : statistical structure induced by f g ) = 0 = ⇒ K := K ( ∇ ,g ) = 0 . K := K ( � � ∇ , � 4

  7. Example 1 . ( R + ) n := { y = t ( y 1 , . . . , y n ) ∈ R n : y i > 0 } ∇ n : affine connection determined by ∂y j = − δ ij ( y j ) − 1 ∂ ∂ ∇ n ∂ ∂y j ∂y i n ∑ ( dy j ) 2 : Euclidean metric on ( R + ) n g 0 := j =1 ⇒ N n := (( R + ) n , ∇ n , g 0 ) is a statistical manifold with K ̸ = 0 . = 5

  8. ( M, ∇ , g ) : statistical manifold Definition . ( ∇ , g ) is a Hessian structure on M def ⇐ ⇒ ∇ is flat ⇐ ⇒ Locally “ ∃ φ : function on M st g = ∇ dφ ”. Definition (Shima H., J.Math.Soc.Japan 1995). ( M, ∇ , g ) : Hessian manifold, c ∈ R ( ∇ , g ) is of CHC c (i.e. of constant Hessian curvature c ) ⇒ ( ∇ X K ) ( Y, Z ) = − c def ⇐ 2 { g ( X, Y ) Z + g ( X, Z ) Y } , ∀ X, Y, Z ∈ Γ( TM ) ⇐ ⇒ The corresponding K¨ ahler metric on TM is of constant holomorphic sectional curvature − c . = ⇒ g is of constant curvature − c/ 4 . 6

  9. Spaces of CHC zero Theorem 1 (F.-Kurose). (0) ( R n , ∇ g 0 , g 0 ) is a Hessian manifold of CHC zero. (1) N n = (( R + ) n , ∇ n , g 0 ) is a Hessian manifold of CHC zero. (2) N k × ( R n − k , ∇ g 0 , g 0 ) , k = 0 , 1 , . . . , n , are the only simply-connected Hessian manifolds of CHC zero with complete connection. ( ∇ , g ) is of CHC c ⇒ ( ∇ X K ) ( Y, Z ) = − c def ⇐ 2 { g ( X, Y ) Z + g ( X, Z ) Y } , ∀ X, Y, Z ∈ Γ( TM ) 7

  10. Spaces of CHC zero Theorem 1 (F.-Kurose). (0) ( R n , ∇ g 0 , g 0 ) is a Hessian manifold of CHC zero. (1) N n = (( R + ) n , ∇ n , g 0 ) is a Hessian manifold of CHC zero. (2) N k × ( R n − k , ∇ g 0 , g 0 ) , k = 0 , 1 , . . . , n , are the only simply-connected Hessian manifolds of CHC zero with complete connection. Theorem 2 . φ : N n → N n : statistical diffeo ⇐ ⇒ ∃ σ ∈ S n (: permutation on { 1 , . . . , n } ) st φ : ( R + ) n ∋ ( y i ) �→ ( y σ ( i ) ) ∈ ( R + ) n 7

  11. Spaces of CHC zero Theorem 1 (F.-Kurose). (0) ( R n , ∇ g 0 , g 0 ) is a Hessian manifold of CHC zero. (1) N n = (( R + ) n , ∇ n , g 0 ) is a Hessian manifold of CHC zero. (2) N k × ( R n − k , ∇ g 0 , g 0 ) , k = 0 , 1 , . . . , n , are the only simply-connected Hessian manifolds of CHC zero with complete connection. Theorem 2 . φ : N n → N n : statistical diffeo ⇐ ⇒ ∃ σ ∈ S n (: permutation on { 1 , . . . , n } ) st φ : ( R + ) n ∋ ( y i ) �→ ( y σ ( i ) ) ∈ ( R + ) n 7

  12. Theorem 3 . f : N n → N n +1 : statistical hypersurface h = 0 = ⇒ f is a hyperplane expressed as follows: j ) ∈ M n +1 n ( R ) , b = ( b α ) ∈ R n +1 : ∃ L = ( l α (1) l α j = 0 or 1 , α = 1 , . . . , n + 1 , j = 1 , . . . , n , (2) rank L = n , (3) l α 1 + · · · + l α n ≤ 1 , and f α (( y i )) = e b α ( y 1 ) l α 1 · · · ( y n ) l α n . Review. ξ : unit normal vector field of f, � ∇ X f ∗ Y = f ∗ ∇ X Y + h ( X, Y ) ξ, ∀ X, Y ∈ Γ( TM ) . 8

  13. Theorem 3 . f : N n → N n +1 : statistical hypersurface h = 0 = ⇒ f is a hyperplane expressed as follows: j ) ∈ M n +1 n ( R ) , b = ( b α ) ∈ R n +1 : ∃ L = ( l α (1) l α j = 0 or 1 , α = 1 , . . . , n + 1 , j = 1 , . . . , n , (2) rank L = n , (3) l α 1 + · · · + l α n ≤ 1 , and f α (( y i )) = e b α ( y 1 ) l α 1 · · · ( y n ) l α n . Example .       y 1 1 0 0 y 2   , b =   ⇝ f ( y ) =   0 1 0 L = e b 3 b 3 0 0 8’

  14. Theorem 3 . f : N n → N n +1 : statistical hypersurface h = 0 = ⇒ f is a hyperplane expressed as follows: j ) ∈ M n +1 n ( R ) , b = ( b α ) ∈ R n +1 : ∃ L = ( l α (1) l α j = 0 or 1 , α = 1 , . . . , n + 1 , j = 1 , . . . , n , (2) rank L = n , (3) l α 1 + · · · + l α n ≤ 1 , and f α (( y i )) = e b α ( y 1 ) l α 1 · · · ( y n ) l α n . Example .       y 1 1 0 0   , b =   ⇝ f ( y ) =   (cos θ ) y 2 0 1 log cos θ L = (sin θ ) y 2 0 1 log sin θ ( θ ∈ (0 , π/ 2) ) 9

  15. Theorem 3 . f : N n → N n +1 : statistical hypersurface h = 0 = ⇒ f is a hyperplane expressed as follows: j ) ∈ M n +1 n ( R ) , b = ( b α ) ∈ R n +1 : ∃ L = ( l α (1) l α j = 0 or 1 , α = 1 , . . . , n + 1 , j = 1 , . . . , n , (2) rank L = n , (3) l α 1 + · · · + l α n ≤ 1 , and f α (( y i )) = e b α ( y 1 ) l α 1 · · · ( y n ) l α n . Outline of Proof . 1. h = 0 ⇝ the Euclidean second fundamental form of f vanishes. 2. Set f α (( y i )) = ∑ a α j y j + b α , and determine ( a α j ) and ( b α ) . 10

  16. Problem . Construct and classify statistical immersions of N n into N n +1 . Construct cylindrical statistical immersions as a first step. u, v : R + ⊃ I → R + : ( u ′ ( t )) 2 + ( v ′ ( t )) 2 = 1 ( ♮ ) 1   [ s ] s R + × I ∋   ∈ ( R + ) 3 =: x �→ f ( x ) := u ( t ) t v ( t ) Proposition 4 . (1) f : ( R + × I, ∇ 2 , g 0 ) → (( R + ) 3 , ∇ 3 , g 0 ) is a statistical immersion ⇒ ( u ′ ( t )) 3 ( u ( t )) − 1 + ( v ′ ( t )) 3 ( v ( t )) − 1 = t − 1 , t ∈ I ⇐ ( ♮ ) 2 11

  17. Problem . Construct and classify statistical immersions of N n into N n +1 . Construct cylindrical statistical immersions as a first step. u, v : R + ⊃ I → R + : ( u ′ ( t )) 2 + ( v ′ ( t )) 2 = 1 ( ♮ ) 1   [ s ] s R + × I ∋   ∈ ( R + ) 3 =: x �→ f ( x ) := u ( t ) t v ( t ) Proposition 4 . (1) f : ( R + × I, ∇ 2 , g 0 ) → (( R + ) 3 , ∇ 3 , g 0 ) is a statistical immersion ⇒ ( u ′ ( t )) 3 ( u ( t )) − 1 + ( v ′ ( t )) 3 ( v ( t )) − 1 = t − 1 , t ∈ I ⇐ ( ♮ ) 2 11

  18. Proposition 4 (cont.) { u ( t ) = 3 − 3 / 2 { } 3 / 2 , 3 at 2 / 3 + 2 b (2) v ( t ) = 3 − 3 / 2 � � 1 − a 3 � � − 1 { } 3 / 2 3(1 − a 3 ) t 2 / 3 − 2 a 2 b satisfy ODEs ( ♮ ) 1 and ( ♮ ) 2 for a ̸ = 1 , b ∈ R (due to HU Na). Remark . ⇒ f is a plane ( I = R + ). (1) b = 0 = (2) a < 0 and b > 0 = ⇒ f is the cylinder over a curve of the asteroid type. In fact, hu ( t ) 2 / 3 + kv ( t ) 2 / 3 = 1 ( h, k = const > 0 , t ∈ I ⊊ R + ). 0.020 0.015 0.010 0.005 a = − 2 , b = 3 / 4 0.000 0.000 0.005 0.010 0.015 0.020 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend