fidelity susceptibility in gaussian random ensembles
play

Fidelity susceptibility in Gaussian Random Ensembles Marek Ku s* - PowerPoint PPT Presentation

Fidelity susceptibility in Gaussian Random Ensembles Marek Ku s* Piotr Sierant** Artur Maksymov** Jakb Zakrzewski** *Center for Theoretical Physics PAS, Warszawa, Poland **Marian Smoluchowski Instytute of Physics, Jagiellonin University,


  1. Fidelity susceptibility in Gaussian Random Ensembles Marek Ku´ s* Piotr Sierant** Artur Maksymov** Jakb Zakrzewski** *Center for Theoretical Physics PAS, Warszawa, Poland **Marian Smoluchowski Instytute of Physics, Jagiellonin University, Cracow, Poland

  2. Setting ◮ Parametric family of Hamiltonians H = H 0 + λ H 1 ◮ Pure state fidelity F = |� ψ ( 0 ) | ψ ( λ ) �| ◮ We are interested in fidelity of eigenstates: H ( λ ) | ψ n ( λ ) � = E n ( λ ) | ψ n ( λ ) � ◮ For small λ F = 1 − 1 2 χλ 2 + O ( λ 3 ) (first order terms vanish due to the normalization of eigenfunctions) ◮ Definition: χ - fidelity susceptibility (of H 0 )

  3. Properties ◮ Alternatively χ = ∂ 2 F � � � ∂λ 2 � λ = 0 ◮ Hence χ = ( � ∂ λ ψ ( λ ) | ∂ λ ψ ( λ ) � − � ψ ( λ ) | ∂ λ ψ ( λ ) � − � ∂ λ ψ ( λ ) | ψ ( λ ) � ) | λ = 0 what exhibits a nice geometric picture - the real part of the natural Riemannian structure on a manifold of quantum states (Provost and Vallee, 1980) ◮ Quantum Fisher Information G G = 4 χ ◮ The n -th eigenastate fidelity susceptibility for H 0 can be alternatively expressed as | H 1 , nm | 2 � χ n = ( E n − E m ) 2 m � = n H 1 , nm = � ψ n ( 0 ) | H 1 | ψ n ( 0 ) � , E n = E n ( 0 )

  4. Applications ◮ Quantum phase transitions ◮ Bose-Hubbard model (You, Li, Gu, Phys. Rev. E 76 , 022101, 2007) ◮ XY model (Zanardi, Paunkovi´ c, Phys. Rev. E 74 , 031123, 2006) ◮ Dicke model ( ibid. ) ◮ Quantum many-body localization (Hu et al. , Phys. Rev. E 94 , 052119, 2016; Maksymov, Sierant, Zakrzewski, in preparation .) ◮ Whenever you know an ingenuous application of the Quantum Fisher Information

  5. Random Matrices ◮ Usually quite complicated Hamiltonians. A minimalistic assumption ◮ H a , a = 1 , 2 are random matrices from the classical Random ( N × N ) Matrix Gaussian ensembles with densities � − β � 4 J 2 Tr H 2 P ( H a ) ∼ exp a ◮ variance � H 2 nn � = 2 � H 2 mn � = 2 J 2 ◮ GOE ( β = 1 ), GUE ( β = 2 ), GSE ( β = 4 ) ◮ ultimately N → ∞ , J = O ( 1 / N )

  6. Detour. Quantum Chaos. Level Curvature Distribution ◮ Similar quantity was thoroughly investigated in the context of disordered system and quantum chaos ◮ Level Curvature Distribution | H 1 , nm | 2 K n := ∂ E n ( λ ) � = − E n + ∂λ E m − E n m � = n ◮ Characterization of spectral fluctuations in quantum chaotic systems ◮ Conductance in disordered systems � g � ∼ �| K |� , ( λ - magnetic flux through the probe) ◮ The distribution of the curvature in quantum chaotic or disordered systems in Random Matrix Theory, as conjectured by Zakrzewski and Delande W ( K ) ∼ ( 1 + K 2 ) 1 + β/ 2 ◮ Later proved by von Oppen and Fyodorov & Sommers

  7. Back to susceptibility Our task: the distribution of susceptibility at the energy E � N � 1 � P ( χ, E ) = δ ( χ − χ n ) δ ( E − E n ) N ρ ( E ) n = 1 where the averaging � � is over � − β �� � Tr H 2 0 + Tr H 2 P ( H 0 , H 1 ) ∼ exp 1 4 J 2 and ρ ( E ) - the density of states

  8. Calculations. Few tricks ◮ Fourier representation of δ ( χ − χ n ) ◮ averaging over H 1 reduces to a Gaussian integral ◮ averaging over H 0 reduces to the one over the distribution of eigenvalues only, i.e. with the distribution | E k − E l | β e − β k E 2 � � P ( E 1 , E 2 , . . . , E N ) ∼ 4 J 2 k k < l ◮ integrating with δ ( E − E n ) and using the orthogonal/unitary invariance of the RMT distributions allows reducing the dimension N by 1 ◮ at the center of the spectrum E = 0 (can be relaxed) we arrive at β �   � ∞ � det ¯ H 2 d ω e − i ωχ   P ( χ ) ∼   � 1  �  −∞ H 2 − 2 i ω J 2 ¯ 2 det β N − 1 where the averaging is now over ¯ H from ( N − 1 ) × ( N − 1 ) ensemble

  9. Calculations. Some further tricks ◮ Gaussian integral representation � − β � H 2 − 2 i ω J 2 � � H 2 − 2 i ω J 2 � � 2 � ¯ − z † ¯ det ∼ d z exp z β β where z , a N − 1 -component real/complex vector, due to orthogonal/unitary invariance may be chosen as z = r [ 1 , 0 , 0 .. ] T ◮ We arrive at � ∞ � � � H 2 β e − r 2 X � drr s δ χ − 2 J 2 r 2 /β det ¯ P ( χ ) ∼ N − 1 0 ◮ Block matrix representation � H 11 � H 1 j ¯ H = H 1 k V and integration over H 1 m leaves the averaging over the ( N − 2 ) × ( N − 2 ) GOE/GUE matrix V

  10. Asymptotic results GOE The asymptotic ( N → ∞ ) results for the scaled fidelity susceptibility x = χ/ N P O ( x ) = 1 1 � 1 + 1 � � − 1 � exp x 2 6 x 2 x P ( x ) P ( x ) b) N=200 a) 10 0 N=200 2 . 0 N=924 N=924 10 − 1 N=3432 1 . 5 N=3432 10 − 2 N=12870 N=12870 1 . 0 10 − 3 10 − 4 0 . 5 10 − 5 0 . 0 10 − 1 10 0 10 1 10 2 0 . 0 0 . 3 0 . 6 0 . 9 x x

  11. Asymptotic results GUE � 3 1 1 4 + 1 x + 1 � � − 1 � P U ( x ) = 3 √ π exp x 5 / 2 x 2 x P ( x ) P ( x ) a) b) 10 0 N=924 N=924 2 N=3432 N=3432 10 − 2 N=12870 N=12870 1 10 − 4 10 − 6 0 10 − 1 10 0 10 1 10 2 0 . 0 0 . 5 1 . 0 1 . 5 x x

  12. Arbitrary N . GOE � N − 2 � 1 � � N ( χ ) = C O � 2 � χ � � 1 1 + 2 χ + 1 1 1 2 2 N I O , 2 P O √ χ N − 2 1 + χ 1 + 2 χ 2 1 + χ � N + 2 N N + 3 / 2 , N even , I O , 2 = N N + 1 / 2 , odd . N P ( χ ) 10 1 N=2 N=3 10 − 1 N=4 N=5 10 − 3 N=10 N=20 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 χ

  13. Arbitrary N . GUE � 1 � N − 2 � � χ 1 2 P U C U N ( χ ) = × N 1 + χ 1 + 2 χ � � � 2 � 2 � 4 3 � 1 + 3 1 � 1 N − 2 + 1 � 1 I U , 2 I U , 4 × N − 2 1 + 2 χ 1 + 2 χ 1 + χ 1 + χ 4 2 4 � � N 2 + 2 N , 1 3 N , even , even , N N I U , 2 I U , 4 = = N 2 + 4 N + 3 , N 1 N 3 ( N + 1 ) , N odd , N odd . 10 5 10 4 10 3 10 2 GUE, N=3x3 10 1 GUE, N=4x4 GUE, N=5x5 10 0 GUE, N=6x6 GUE, N=6x6 10 − 1 10 − 2 10 − 1 10 0 10 1 10 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend