monte carlo in different ensembles daan frenkel different
play

Monte Carlo in different ensembles Daan Frenkel Different Ensembles - PowerPoint PPT Presentation

Monte Carlo in different ensembles Daan Frenkel Different Ensembles Ensemble Name Constant Fluctuating (Imposed) (Measured) NVT Canonical N,V,T P NPT Isobaric-isothermal N,P,T V VT Grand-canonical ,V,T N 2 Statistical


  1. Monte Carlo in different ensembles Daan Frenkel

  2. Different Ensembles Ensemble Name Constant Fluctuating (Imposed) (Measured) NVT Canonical N,V,T P NPT Isobaric-isothermal N,P,T V µ VT Grand-canonical µ ,V,T N 2

  3. Statistical Thermodynamics Partition function 1 $ & ( ) dr N exp − β U r N ∫ Q NVT = ' . % Λ 3 N N ! I will come back to this Ensemble average 1 1 $ & ( ) exp − β U r N ( ) dr N A r N ∫ A NVT = ' . % Λ 3 N N ! Q NVT Probability to find a particular configuration 1 1 ( ) N N ( N N ) ( ) N ( ) N N r dr' r' r exp U r' exp U r # $ # $ = δ − − β ∝ − β ∫ 3 N ' ( ' ( Q N ! Λ NVT Free energy ( ) F ln Q β = − 3 NVT

  4. Detailed balance o n K o ( n ) K n ( o ) → = → K o ( n ) N o ( ) ( o n ) acc( o n ) → = × α → × → K n ( o ) N n ( ) ( n o ) acc( n o ) → = × α → × → acc( o n ) N n ( ) ( n o ) N n ( ) → × α → = = acc( n o ) N o ( ) ( o n ) N o ( ) → × α → 4

  5. NVT -ensemble N n ( ) exp U n ( ) ∝ ⎡ − β ⎤ ⎣ ⎦ acc( o n ) N n ( ) → = acc( n o ) N o ( ) → acc( o n ) → exp U n U o ( ) ( ) ⎡ ⎤ ⎡ ⎤ = − β − ⎣ ⎦ ⎣ ⎦ acc( n o ) → 5

  6. NPT ensemble We control the • Temperature (T) • Pressure (P) • Number of particles (N) 6

  7. Scaled coordinates Partition function 1 $ & ( ) dr N exp − β U r N ∫ Q NVT = ' . % Λ 3 N N ! Scaled coordinates s r i L / = The energy depends on i the real coordinates This gives for the partition function 3 N L ( ) N N Q ds exp U s ; L " # = ∫ − β NVT 3 N % & N ! Λ N V ( ) N N ds exp U s ; L " # = ∫ − β 3 N % & N ! Λ 7

  8. N in volume V M in volume V 0 -V 8

  9. N V ( ) N N Q ds exp U s ; L " # = ∫ − β NVT % & 3 N N ! Λ M − N ( ) V 0 − V V N $ & ( ) ds M − N exp − β U 0 s M − N ; L Q MV 0 , NV , T = ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! $ & ( ) ds N exp − β U s N ; L ∫ × % ' V 0 − V ( ) M − N Q MV 0 , NV , T = V N ∫ ds N exp − β U s N ; L $ ( ) & Λ 3( M − N ) M − N ( ) ! Λ 3 N N ! % ' 9

  10. M − N ( ) V 0 − V V N $ & ( ) ds N exp − β U s N ; L Q MV 0 , NV , T = ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! To get the Partition Function of this system, we have to integrate over all possible volumes : M − N ( ) V 0 − V V N $ & ( ) ds N exp − β U s N ; L Q MV 0 , N , T = d V ∫ ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! Now let us take the following limits: M M → ∞$ constant ρ = → % V V → ∞ & 0 As the particles in the reservoir are an ideal gas, we have: P ρ = β 10

  11. M − N ( ) V 0 − V V N $ & ( ) ds N exp − β U s N ; L Q MV 0 , N , T = d V ∫ ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! We have M N M N − − M N M N V V V − 1 V V V − exp M N V V ( ) ( ) ( ) " # − = − ≈ − − % & 0 0 0 0 0 M N − M N M N V V V − exp [ V ] V − exp [ PV ] ( ) − ≈ − ρ = − β 0 0 0 This gives: P β N N ( N ) Q d V exp PV V ds exp U s ; L [ ] " # = − β − β Λ ∫ ∫ NPT 3 N % & N ! 11

  12. NPT Ensemble Partition function: P β N N ( N ) Q d V exp PV V ds exp U s ; L [ ] ⎡ ⎤ = Λ ∫ − β ∫ − β NPT 3 N ⎣ ⎦ N ! Probability to find a particular configuration: ( N ) N ( N ) N V , s V exp PV exp U s ; L [ ] " # ∝ − β − β NPT & ' Sample a particular configuration: • change of volume • change of reduced coordinates Acceptance rules ?? 12

  13. Detailed balance o n K o ( n ) K n ( o ) → = → K o ( n ) N o ( ) ( o n ) acc( o n ) → = × α → × → K n ( o ) N n ( ) ( n o ) acc( n o ) → = × α → × → acc( o n ) N n ( ) ( n o ) N n ( ) → × α → = = acc( n o ) N o ( ) ( o n ) N o ( ) → × α → 13

  14. NPT -ensemble ( ) ( ) N N N N V , s V exp PV exp U s ; L [ ] " # ∝ − β − β NPT & ' acc( o n ) N n ( ) → = acc( n o ) N o ( ) → Suppose we change the position of a randomly selected particle N ( N ) V exp PV exp U s ; L [ ] " # − β − β acc( o n ) → n & ' = acc( n o ) N ( N ) → V exp [ PV ] exp U s ; L " # − β − β o & ' ( N ) exp U s ; L " # − β n % & { } exp U n U o ( ) ( ) = = − β " − # % & ( N ) exp U s ; L " # − β o % & 14

  15. NPT -ensemble ( ) ( ) N N N N V , s V exp PV exp U s ; L [ ] " # ∝ − β − β NPT & ' acc( o n ) N n ( ) → = acc( n o ) N o ( ) → Suppose we change the volume of the system N ( N ) V exp PV exp U s ; L [ ] " # − β − β acc( o n ) → n n n & ' = acc( n o ) N ( N ) → V exp [ PV ] exp U s ; L " # − β − β o o o & ' N V " # { } n exp P V V exp U n U 0 ( ) ( ) ( ) = $ − β − % − β $ − % ' ( ) * ) * n o V + , o 15

  16. Algorithm: NPT • Randomly change the position of a particle • Randomly change the volume 16

  17. 17

  18. 18

  19. 19

  20. Measured and Imposed Pressure • Imposed pressure P • Measured pressure <P> from virial # & ∂ F ds N e − β U ( s N ) ( ) dVV N e − β PV ∫ ∫ − % ( # & $ ∂ V ' P = − ∂ F N , T = % ( ds N e − β U ( s N ) dVV N e − β PV $ ∂ V ' ∫ ∫ N , T * , ( ) p ( V ) = exp − β F ( V ) + PV + - Q NPT * , ∫ ( ) Q NPT = β P dV exp − β F ( V ) + PV + - 20

  21. # & β P dV ∂ F ) + ( ) ∫ ( ) + PV P = − exp − β F V % ( * , Q ( NPT ) ∂ V $ ' N , T ) + ( ) ∂ exp − β F V [ ] dV exp − β PV β P * , ∫ P = Q ( NPT ) ∂ V β 21

  22. Measured and Imposed Pressure b b b − • Partial integration ∫ ∫ [ ] a f dg = fg gdf a a [ ] 0 ( ( ) ) exp F V PV • For V=0 and V= ∞ − β + = • Therefore, [ ] [ ] ( ) P exp PV exp F V β − β ∂ − β P dV = ∫ Q ( NPT ) V β ∂ P β [ ] ( ( ) ) P dVP exp F V PV P = = − β + = ∫ Q ( NPT ) 22

  23. Grand-canonical ensemble What are the equilibrium conditions? 23

  24. Grand-canonical ensemble We impose: – Temperature (T) – Chemical potential ( µ ) – Volume (V) – But NOT pressure 24

  25. System in reservoir Here they don’t Here particles interact What is the statistical thermodynamics of this ensemble? 25

  26. N V ( ) N N Q ds exp U s ; L " # = ∫ − β NVT % & 3 N N ! Λ M − N ( ) V 0 − V V N $ & ( ) ds M − V exp − β U 0 s M − N ; L Q MV 0 , NV , T = ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! $ & ( ) ds N exp − β U s N ; L ∫ × % ' V 0 − V ( ) M − N Q MV 0 , NV , T = V N ∫ ds N exp − β U s N ; L $ ( ) & Λ 3( M − N ) M − N ( ) ! Λ 3 N N ! % ' 26

  27. M − N ( ) V 0 − V V N $ & ( ) ds N exp − β U s N ; L Q MV 0 , NV , T = ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! To get the Partition Function of this system, we have to sum over all possible number of particles M − N ( ) V 0 − V N = M V N $ & ( ) ds N exp − β U s N ; L Q MV 0 , N , T = ∑ ∫ Λ 3( M − N ) M − N Λ 3 N N ! % ' ( ) ! N = 0 Now let us take the following limits: M M → ∞$ constant ρ = → % V V → ∞ & 0 As the particles are an ideal gas in the big reservoir we have: ( ) 3 k T ln µ = Λ ρ B N exp N V ( ) N = ∞ β µ ( ) N N Q ds exp U s ; L ∑ # $ = ∫ − β VT 27 3 N & ' µ N ! Λ N 0 =

  28. Q tot = Q R ( M − N ) Q sys ( N ) = e − β F R ( M − N ) Q sys ( N ) Expand F R ✓ ∂ F R ◆ F R ( M − N ) = F R ( M ) − N + · · · ∂ M ✓ ∂ F R ◆ But: = µ And hence : ∂ M Q tot = Q R ( M − N ) Q sys ( N ) = e − β F R ( M ) e β µN Q sys ( N ) Sum over all N: N exp N V ( ) N = ∞ β µ ( ) N N Q ds exp U s ; L ∑ # $ = ∫ − β VT 28 3 N & ' µ N ! Λ N 0 =

  29. µ VT Ensemble Partition function: N exp N V ( ) N = ∞ β µ N ( N ) Q ds exp U s ; L # $ ∑ = ∫ − β VT & ' 3 N µ N ! Λ N 0 = Probability to find a particular configuration: N exp N V ( ) β µ ( ) ( ) N N N V , s exp U s ; L " # ∝ − β VT & ' µ 3 N N ! Λ Sample a particular configuration: • Change of the number of particles • Change of reduced coordinates Acceptance rules ?? 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend