eliminating redundant columns from column generation
play

Eliminating redundant columns from column generation subproblems - PowerPoint PPT Presentation

Eliminating redundant columns from column generation subproblems using classical Benders cuts ubbecke 1 Stephen Maher 2 Jonas Witt 1 Marco L 1 RWTH Aachen University 2 Lancaster University SCIP workshop 2018 Aachen 08/03/2018


  1. Eliminating redundant columns from column generation subproblems using classical Benders’ cuts ubbecke 1 Stephen Maher 2 Jonas Witt 1 Marco L¨ 1 RWTH Aachen University 2 Lancaster University SCIP workshop 2018 · Aachen · 08/03/2018

  2. Dantzig-Wolfe reformulation for IPs min c T x s . t . Ax ≥ b Dx ≥ d x ∈ Z n ≥ 0 ◮ original problem p.2

  3. Dantzig-Wolfe reformulation for IPs min c T x s . t . Ax ≥ b Dx ≥ d x ∈ Z n ≥ 0 ◮ original problem ◮ “discretize” Dx ≥ d : ≥ 0 : Dx ≥ d } = � { x ∈ Z n p { x p } ◮ substitute x -variables with λ -variables � p x p λ p = x � p λ p = 1 λ ∈ { 0 , 1 } q p.2

  4. Dantzig-Wolfe reformulation for IPs p c T x p λ p min � min c T x s . t . � Dantzig-Wolfe p Ax p λ p ≥ b s . t . Ax ≥ b reformulation − − − − − − − − → � Dx ≥ d p λ p = 1 x ∈ Z n λ ∈ { 0 , 1 } q ≥ 0 ◮ original problem ◮ master IP ◮ “discretize” Dx ≥ d : ≥ 0 : Dx ≥ d } = � { x ∈ Z n p { x p } ◮ substitute x -variables with λ -variables � p x p λ p = x � p λ p = 1 λ ∈ { 0 , 1 } q p.2

  5. Dantzig-Wolfe reformulation for IPs p c T x p λ p min � min c T x s . t . � Dantzig-Wolfe p Ax p λ p ≥ b s . t . Ax ≥ b reformulation − − − − − − − − → � Dx ≥ d p λ p = 1 x ∈ Z n λ ∈ { 0 , 1 } q ≥ 0 ◮ original problem ◮ master IP ◮ “discretize” Dx ≥ d : ◮ solve master LP with col.gen. ≥ 0 : Dx ≥ d } = � { x ∈ Z n p { x p } ◮ col.gen. subproblem ◮ substitute x -variables with min redcost ( x ) λ -variables s . t . Dx ≥ d � p x p λ p = x x ∈ Z n ≥ 0 � p λ p = 1 λ ∈ { 0 , 1 } q p.2

  6. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  7. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  8. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  9. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  10. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  11. Dantzig-Wolfe reformulation for IPs Dx ≥ d Ax ≥ b p.3

  12. Literature ◮ “ A [column] is redundant when the [master IP] admits an optimal solution that can be expressed without this [column]. ” Vanderbeck and Savelsbergh (2006) p.4

  13. Literature ◮ “ A [column] is redundant when the [master IP] admits an optimal solution that can be expressed without this [column]. ” Vanderbeck and Savelsbergh (2006) ◮ refine subproblem to eliminate (some) redundant columns ◮ until now: only domain propagation for tighter variable bounds in subproblems Vanderbeck and Savelsbergh (2006); Gamrath and L¨ ubbecke (2010) ◮ this talk: add inequalities/cuts to subproblems p.4

  14. Literature ◮ “ A [column] is redundant when the [master IP] admits an optimal solution that can be expressed without this [column]. ” Vanderbeck and Savelsbergh (2006) ◮ refine subproblem to eliminate (some) redundant columns ◮ until now: only domain propagation for tighter variable bounds in subproblems Vanderbeck and Savelsbergh (2006); Gamrath and L¨ ubbecke (2010) ◮ this talk: add inequalities/cuts to subproblems ◮ column is strongly redundant if it is not part of any optimal solution to the master IP p.4

  15. Redundant columns z ∗ = min c T 1 x 1 c T 2 x 2 + A 1 x 1 A 2 x 2 s . t . + ≥ b D 1 x 1 ≥ d 1 D 2 x 2 ≥ d 2 Z n k x k ∈ ∀ k ∈ { 1 , 2 } ≥ 0 ◮ set F of feasible solutions ◮ set F k of feasible solution to subproblem k ∈ { 1 , 2 } F k = { x k ∈ Z n k ≥ 0 : D k x k ≥ d k } p.5

  16. Redundant columns z ∗ = min c T 1 x 1 c T 2 x 2 + A 1 x 1 A 2 x 2 s . t . + ≥ b D 1 x 1 ≥ d 1 D 2 x 2 ≥ d 2 Z n k x k ∈ ∀ k ∈ { 1 , 2 } ≥ 0 ◮ set F of feasible solutions ◮ set F k of feasible solution to subproblem k ∈ { 1 , 2 } F k = { x k ∈ Z n k ≥ 0 : D k x k ≥ d k } x 1 ∈ F 1 is strongly redundant? ◮ how do we check if a column ¯ p.5

  17. Redundant columns z ∗ = min c T 1 x 1 c T 2 x 2 + A 1 x 1 A 2 x 2 s . t . + ≥ b D 1 x 1 ≥ d 1 D 2 x 2 ≥ d 2 Z n k x k ∈ ∀ k ∈ { 1 , 2 } ≥ 0 ◮ set F of feasible solutions ◮ set F k of feasible solution to subproblem k ∈ { 1 , 2 } F k = { x k ∈ Z n k ≥ 0 : D k x k ≥ d k } x 1 ∈ F 1 is strongly redundant? ◮ how do we check if a column ¯ x 2 ∈ F 2 with → check if ∃ ¯ x 1 , ¯ x 2 ) ∈ F (¯ 1 x 1 + c T x 2 ≤ z ∗ c T 1 ¯ 2 ¯ 2 p.5

  18. Redundant columns x 1 with feasibility problem: ◮ check strong redundancy of ¯ min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 c T 2 x 2 − c T x 1 z ∗ ≤ 1 ¯ Z n 2 x 2 ∈ ≥ 0 p.6

  19. Redundant columns x 1 with feasibility problem: ◮ check strong redundancy of ¯ min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 c T 2 x 2 − c T x 1 z ∗ ≤ 1 ¯ Z n 2 x 2 ∈ ≥ 0 ◮ problem is hard to solve x 1 ◮ how subproblem should be refined to eliminate redundant ¯ is not clear p.6

  20. Redundant columns x 1 with feasibility problem: ◮ check strong redundancy of ¯ min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 z UB − c T c T 2 x 2 x 1 ≤ 1 ¯ Z n 2 x 2 ∈ ≥ 0 ◮ problem is hard to solve x 1 ◮ how subproblem should be refined to eliminate redundant ¯ is not clear → upper bound z UB instead of z ∗ p.6

  21. Redundant columns x 1 with feasibility problem: ◮ check strong redundancy of ¯ min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 z UB − c T c T 2 x 2 x 1 ≤ 1 ¯ Q n 2 x 2 ∈ ≥ 0 ◮ problem is hard to solve x 1 ◮ how subproblem should be refined to eliminate redundant ¯ is not clear → upper bound z UB instead of z ∗ → relax integrality of x 2 p.6

  22. Redundant columns x 1 with feasibility problem: ◮ check strong redundancy of ¯ min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 z UB − c T c T 2 x 2 x 1 ≤ 1 ¯ Q n 2 x 2 ∈ ≥ 0 ◮ problem is hard to solve x 1 ◮ how subproblem should be refined to eliminate redundant ¯ is not clear → upper bound z UB instead of z ∗ → relax integrality of x 2 → classical Benders’ feasibility cuts to refine subproblem p.6

  23. Subproblem refining inequalities min 0 A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ D 2 x 2 ≥ d 2 z UB − c T 2 x 2 x 1 c T ≤ 1 ¯ x 2 ≥ 0 p.7

  24. Subproblem refining inequalities min 0 x 1 ) max dualobj ( π, ¯ A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ s . t . ( ∗ ) π ≤ 0 D 2 x 2 ≥ d 2 π A , π D , − π c ≥ 0 z UB − c T 2 x 2 x 1 c T ≤ 1 ¯ � �� � x 2 π ≥ 0 ◮ dual polyhedron independent of ¯ x 1 p.7

  25. Subproblem refining inequalities min 0 x 1 ) max dualobj ( π, ¯ A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ s . t . ( ∗ ) π ≤ 0 D 2 x 2 ≥ d 2 π A , π D , − π c ≥ 0 z UB − c T 2 x 2 x 1 c T ≤ 1 ¯ � �� � x 2 π ≥ 0 ◮ dual polyhedron independent of ¯ x 1 ◮ if primal infeasible, ∃ Farkas proof (dual ray) ¯ π with: x 1 ) > 0 dualobj (¯ π, ¯ p.7

  26. Subproblem refining inequalities min 0 x 1 ) max dualobj ( π, ¯ A 2 x 2 x 1 s . t . ≥ b − A 1 ¯ s . t . ( ∗ ) π ≤ 0 D 2 x 2 ≥ d 2 π A , π D , − π c ≥ 0 z UB − c T 2 x 2 x 1 c T ≤ 1 ¯ � �� � x 2 π ≥ 0 ◮ dual polyhedron independent of ¯ x 1 ◮ if primal infeasible, ∃ Farkas proof (dual ray) ¯ π with: x 1 ) > 0 dualobj (¯ π, ¯ → valid inequality for all x 1 , not strongly redundant π, x 1 ) ≤ 0 dualobj (¯ p.7

  27. Subproblem refining inequalities dualobj ( π,x 1 ) � �� � D d 2 + π c · ( z UB − c T x 1 ) + π T x 1 ) ≤ 0 π T A ( b − A 1 ¯ 1 ¯ p.8

  28. Subproblem refining inequalities dualobj ( π,x 1 ) � �� � D d 2 + π c · ( z UB − c T x 1 ) + π T x 1 ) ≤ 0 π T A ( b − A 1 ¯ 1 ¯ 1 if π c = 0 : π T b + µ T d 2 ≤ π T A 1 x 1 feasibility subproblem cut p.8

  29. Subproblem refining inequalities dualobj ( π,x 1 ) � �� � D d 2 + π c · ( z UB − c T x 1 ) + π T x 1 ) ≤ 0 π T A ( b − A 1 ¯ 1 ¯ 1 if π c = 0 : π T b + µ T d 2 ≤ π T A 1 x 1 feasibility subproblem cut 2 if π c < 0 , normalize π c = − 1 : D d 2 − z UB ≤ ( π T π T A b + π T A A 1 − c T 1 ) x 1 optimality subproblem cut p.8

  30. Subproblem refining inequalities dualobj ( π,x 1 ) � �� � D d 2 + π c · ( z UB − c T x 1 ) + π T x 1 ) ≤ 0 π T A ( b − A 1 ¯ 1 ¯ 1 if π c = 0 : π T b + µ T d 2 ≤ π T A 1 x 1 feasibility subproblem cut 2 if π c < 0 , normalize π c = − 1 : D d 2 − z UB ≤ ( π T π T A b + π T A A 1 − c T 1 ) x 1 optimality subproblem cut ◮ alternative way without objective constraints: use dual instead of Farkas values, maximizing violation p.8

  31. Elimination of redundant columns ◮ pricing iteration with redundancy check: solve col.gen. subproblems 1 for each subproblem solution 2 ◮ check redundancy with LP ◮ if redundant, add subproblem cut if all found columns are redundant → 3 1 p.9

  32. Elimination of redundant columns ◮ pricing iteration with redundancy check: solve col.gen. subproblems 1 for each subproblem solution 2 ◮ check redundancy with LP ◮ if redundant, add subproblem cut if all found columns are redundant → 3 1 + potentially stronger dual bound with master LP + possibly “better” columns for the master IP p.9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend