and related models
play

and Related Models AMOS BEIMEL, BEN GURION UNIVERSITY, ISRAEL EYAL - PowerPoint PPT Presentation

The Complexity of PSM Protocols and Related Models AMOS BEIMEL, BEN GURION UNIVERSITY, ISRAEL EYAL KUSHILEVITZ, TECHNION, ISRAEL PNINA NISSIM, BEN GURION UNIVERSITY, ISRAEL Overview Introduction Ideas of Our Construction Conclusion


  1. The Complexity of PSM Protocols and Related Models AMOS BEIMEL, BEN GURION UNIVERSITY, ISRAEL EYAL KUSHILEVITZ, TECHNION, ISRAEL PNINA NISSIM, BEN GURION UNIVERSITY, ISRAEL

  2. Overview • Introduction • Ideas of Our Construction • Conclusion

  3. Private Simultaneous Messages (PSM) model [FKN94,IK97] • Simplest communication pattern. r r r • Shared randomness. • Each party sends one message. • Correctness: the referee learns 𝑔(𝑦 1 , … , 𝑦 𝑙 ) . • Security: the referee learns nothing else. • Communication complexity: the length of the messages. Goal: compute 𝑔(𝑦 1 , … , 𝑦 𝑙 )

  4. Motivation • PSM is an interesting problem on its own • Simplest model of secure computation – no interaction. • PSM implies interesting cryptographic primitives as: • Protocols for conditional disclosure of secrets (CDS). • Generalized oblivious transfer. • Several generalizations of PSM have been studied: • Non-interactive MPC [BGIKMP14]. • Ad-hoc PSM protocols [BGIK16, BIK17].

  5. Our results – PSM protocols for arbitrary functions 𝑂 𝑙 → {0,1} • Function 𝑔 ∶ • [FKN] – Every function has a PSM protocol with communication 𝑃(𝑂 𝑙−1 ) . Num. of parties Previous works Our Work 𝑃(𝑂 1/2 ) [BIKK] 2 𝑃(𝑂 2 ) [FKN] 𝑃(𝑂) 3 𝑃(𝑂 3 ) [FKN] 𝑃(𝑂 5/3 ) 4 𝑃(𝑂 4 ) [FKN] 𝑃(𝑂 7/3 ) 5 𝑃(𝑙 3 ∙ 𝑂 𝑙/2 ) 𝑃(𝑂 𝑙−1 ) [FKN] 𝑙 ≥ 6 Our protocols for 𝑙 ≥ 6 can handle long outputs with the same message length.

  6. Our results More results: • PSM protocols for functions with inputs of different sizes • A PSM for 𝑙 parties from a PSM for 𝑢 parties ( 𝑢 < 𝑙 ) • Applications • Ad-hoc PSM protocols • Homogenous distribution designs • Non-interactive MPC protocols • Conditional disclosure of secrets implies Secret-sharing schemes for homogenous access structures (independently by Liu and Vaikuntanathan STOC 2018)

  7. Overview • Introduction • Ideas of Our Construction • Conclusion

  8. The cube approach A technique from private information retrieval of CGKS98. Starting point – view a function 𝑔: 𝑂 𝑙 → 0,1 as an ℓ - dimensional cube for some ℓ . For a set 𝑇 and an element 𝑗 : 𝑇 ⊕ {𝑗} = ቊ𝑇 ∪ 𝑗 , 𝑗 ∉ 𝑇 𝑇\{𝑗}, 𝑗 ∈ 𝑇

  9. The cube approach – 2 dimensions 𝑇 1 , 𝑇 2 ⊆ 𝑂 𝑏(𝑇 1 , 𝑇 2 ) =⊕ 𝑏∈𝑇 1 ,𝑐∈𝑇 2 𝑔(𝑏, 𝑐) 𝑦 𝑔(𝑦, 𝑧) Fact: 𝑧 𝑔 𝑦, 𝑧 = 𝑏(𝑇 1 , 𝑇 2 ) ⊕ 𝑏(𝑇 1 ⊕ {𝑦}, 𝑇 2 ) ⊕ 𝑏(𝑇 1 , 𝑇 2 ⊕ {𝑧}) ⊕ 𝑏(𝑇 1 ⊕ {𝑦}, 𝑇 2 ⊕ {𝑧}) 𝑧 𝑦

  10. A 2-Party PSM Protocol for 𝑔: 𝑂 × 𝑂 → {0,1} • View 𝑔 as a 2-dimensional cube. 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 referee

  11. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 referee

  12. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑦 1 , 𝑇 2 ) 𝐐 𝟑 𝐐 𝟐 referee

  13. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } referee

  14. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝑏 01 = 𝑏(𝑇 1 , 𝑇 2 ⊕ {𝑦 2 }) 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } referee

  15. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } 𝑏 01 ⊕ 𝑐, 𝑇 2 ⊕ {𝑦 2 } referee

  16. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } 𝑏 01 ⊕ 𝑐, 𝑇 2 ⊕ {𝑦 2 } 𝑏 𝑇 1 ⊕ 𝑦 1 , 𝑇 2 ⊕ 𝑦 2 ? referee

  17. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } 𝑏 01 ⊕ 𝑐, 𝑇 2 ⊕ {𝑦 2 } referee

  18. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } 𝑏 01 ⊕ 𝑐, 𝑇 2 ⊕ {𝑦 2 } Computes 𝑏 11 = 𝑏 𝑇 1 ⊕ 𝑦 1 , 𝑇 2 ⊕ 𝑦 2 . referee

  19. A 2-Party PSM Protocol 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑇 1 , 𝑇 2 ⊆ 𝑆 𝑂 , 𝑐 ∈ {0,1} 𝑦 1 𝑦 2 𝐐 𝟑 𝐐 𝟐 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐, 𝑇 1 ⊕ {𝑦 1 } 𝑏 01 ⊕ 𝑐, 𝑇 2 ⊕ {𝑦 2 } 𝑔 𝑦 1 , 𝑦 2 = 𝑏 00 ⊕ 𝑏 10 ⊕ 𝑐 ⊕ 𝑏 01 ⊕ 𝑐 ⊕ 𝑏 11 referee

  20. A 2-Party PSM Protocol for 𝑔: 𝑂 × 𝑂 → {0,1} • The communication complexity of this protocol is 𝑃(𝑂) . • The same complexity as the protocol of [FKN] . • There is a more efficient PSM protocol with communication 1 𝑃(𝑂 2 ) [BIKK].

  21. A 𝑙 -Party PSM Protocol PSM protocol for function 𝑔: 𝑂 𝑙 → {0,1} using the cube approach. 𝑦 𝑙 𝑦 𝑙 𝑦 1 𝑦 𝑙 2+1 2 … … 𝐐 𝟐 𝐐 𝒍/𝟑 𝐐 𝒍/𝟑+𝟐 𝐐 𝒍

  22. A 𝑙 -Party PSM Protocol We view 𝑔 as a 2-dimensional cube. 𝑧 2 𝑧 1 𝑦 𝑙 𝑦 𝑙 𝑦 1 𝑦 𝑙 2+1 2 … … 𝐐 𝟐 𝐐 𝒍/𝟑 𝐐 𝒍/𝟑+𝟐 𝐐 𝒍

  23. A 𝑙 -Party PSM Protocol The common randomness: 𝑇 1 , 𝑇 2 ⊆ 𝑆 [𝑂 𝑙/2 ] 𝑧 2 𝑧 1 𝑦 𝑙 𝑦 𝑙 𝑦 1 𝑦 𝑙 2+1 2 … … 𝐐 𝟐 𝐐 𝒍/𝟑 𝐐 𝒍/𝟑+𝟐 𝐐 𝟑

  24. A 𝑙 -Party PSM Protocol 4 Cubes: 1. 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) 2. 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ) 3. 𝑏 01 = 𝑏 𝑇 1 , 𝑇 2 ⊕ 𝑧 2 4. 𝑏 11 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ⊕ 𝑧 2 )

  25. A 𝑙 -Party PSM Protocol 4 Cubes: 1. 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) – Party 𝑄 1 computes 𝑏 00 . 𝑷(𝟐) 2. 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ) 3. 𝑏 01 = 𝑏 𝑇 1 , 𝑇 2 ⊕ 𝑧 2 4. 𝑏 11 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ⊕ 𝑧 2 )

  26. Computing 𝑏(𝑇 1 ⊕ {𝑧 1 }, 𝑇 2 ) 𝑧 2 𝑧 1 𝑦 𝑙 𝑦 𝑙 𝑦 1 𝑦 𝑙 2+1 2 … … 𝐐 𝟐 𝐐 𝒍/𝟑 𝐐 𝒍/𝟑+𝟐 𝐐 𝟑 Use a k/2-party PSM for this function

  27. A 𝑙 -Party PSM Protocol 4 Cubes: 1. 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) 𝑷(𝟐) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 2. 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 3. 𝑏 01 = 𝑏 𝑇 1 , 𝑇 2 ⊕ 𝑧 2 4. 𝑏 11 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ⊕ 𝑧 2 )

  28. A 𝑙 -Party PSM Protocol 4 Cubes: 1. 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) 𝑷(𝟐) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 2. 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 3. 𝑏 01 = 𝑏 𝑇 1 , 𝑇 2 ⊕ 𝑧 2 4. 𝑏 11 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ⊕ 𝑧 2 ) – Use a PSM to send 𝑇 1 ⊕ 𝑧 1 and 𝑇 2 ⊕ 𝑧 2 to referee.

  29. A 𝑙 -Party PSM Protocol 4 Cubes: 1. 𝑏 00 = 𝑏(𝑇 1 , 𝑇 2 ) 𝑷(𝟐) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 2. 𝑏 10 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ) 𝑷(𝒍𝑶 𝒍/𝟑−𝟐 ) 3. 𝑏 01 = 𝑏 𝑇 1 , 𝑇 2 ⊕ 𝑧 2 𝑷(𝒍 𝟒 𝑶 𝒍/𝟑 ) 4. 𝑏 11 = 𝑏(𝑇 1 ⊕ 𝑧 1 , 𝑇 2 ⊕ 𝑧 2 ) The referee can compute 𝑔(𝑧 1 , 𝑧 2 ) which is the xor of the 4 cubes. Communication and randomness complexity 𝑷 𝒍 𝟒 𝑶 𝒍/𝟑 .

  30. The cube approach – summary Num. of Num. of parties (𝑙) dimensions (ℓ) [BIKK14] 2 4 3,4,5 3 𝑙 ≥ 6 2 The number of dimensions for functions in which the domain of inputs are not the same depends on the domains.

  31. Overview • Introduction • Ideas of Our Construction • Conclusion

  32. Conclusion and open problems • Main result: a PSM protocol for an arbitrary function 𝑔: 𝑂 𝑙 → 0,1 . • Our construction is based on the cube approach, which is technique from PIR. • Can we use other techniques from PIR to improve the complexity of PSM protocols? • [LVW18] efficient CDS protocols • Can we improve the complexity of PSM protocols in other ways?

  33. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend