chapt er 14 redundant arit hmet ic
play

Chapt er 14: Redundant Arit hmet ic Keshab K. Parhi A - PowerPoint PPT Presentation

Chapt er 14: Redundant Arit hmet ic Keshab K. Parhi A non-redundant radix-r number has digit s f rom t he set {0, 1, , r - 1} and all numbers can be represent ed in a unique way. A radix-r redundant signed-digit number syst em


  1. Chapt er 14: Redundant Arit hmet ic Keshab K. Parhi

  2. • A non-redundant radix-r number has digit s f rom t he set {0, 1, … , r - 1} and all numbers can be represent ed in a unique way. • A radix-r redundant signed-digit number syst em is based on digit set S ≡ {- β , -( β - 1), … , -1, 0, 1, … , α }, where, 1 ≤ β , α ≤ r - 1. • The digit set S cont ains more t han r values ⇒ mult iple represent at ions f or any number in signed digit f ormat . Hence, t he name redundant . • A symmet ric signed digit has α = β . • Carry-f ree addit ion is an at t ract ive propert y of redundant signed-digit numbers. This allows most signif icant digit (msd) f irst redundant arit hmet ic, also called on-line arit hmet ic. Chap. 14 2

  3. Redundant Number Representations • A symmet ric signed-digit represent at ion uses t he digit set r. α > = {- α , … , α }, where r is t he radix and α t he D < , -1, 0, 1, … largest digit in t he set . A number in t his represent at ion is writ t en as : x 0 = ∑ x W-1- i r i X < r . α > = x W-1 .x W-2 .x W-3 … The sign of t he number is given by t he sign of t he most signif icant non-zero digit . α Redundancy Fact or ρ Digit Set D < r . α > I ncomplet e < (r – 1)/ 2 < ½ Complet e but non-redundant = (r – 1)/ 2 = ½ ≥  r/ 2  Redundant > ½ =  r/ 2  Minimally redundant > ½ and < 1 Maximally redundant = r – 1 = 1 Over-redundant > r - 1 > 1 Chap. 14 3

  4. Hybrid Radix- 2 Addition S < 2.1> = X < 2.1> + Y where, X < r. α > = x W-1 .x W-2 x W-3 … x 0 , Y = y W-1 .y W-2 y W-3 … y 0 . The addit ion is carried out in t wo st eps : 1. The 1 st st ep is carried out in parallel f or all t he bit posit ions. An int ermediat e sum p i = x i + y i is comput ed, which lies in t he range {1, 0, 1, 2}. The addit ion is expressed as: x i + y i = 2t i + u i , where t i is t he t ransf er digit and has value 0 or 1, and is + ; u i is t he int erim sum and has value eit her 1 or denot ed as t i - . t -1 is assigned t he value of 0. 0 and is denot ed as -u i 2. The sum digit s s i are f ormed as f ollows: s i = t i-1 + - u i - Chap. 14 4

  5. Digit Radix 2 Digit Set Binary Code x i {1, 0, 1} x i + - x i - y i {0, 1} y i + p i = x i + y i {1, 0, 1, 2} 2t i + u i u i {1, 0} -u i - t i {0, 1} t i + + - s i - s i = u i + t i- 1 {1, 0, 1} s i Eight -digit hybrid radix-2 adder Chap. 14 5

  6. Digit -serial adder f ormed by f olding LSD-f ir st adder MSD-f irst adder Chap. 14 6

  7. Hybrid Radix- 2 Subtraction S < 2.1> = X < 2.1> - Y where, X < r. α > = x W-1 .x W-2 x W-3 … x 0 , Y = y W-1 .y W-2 y W-3 … y 0 . The addit ion is carried out in t wo st eps : 1. The 1 st st ep is carried out in parallel f or all t he bit posit ions. An int ermediat e dif f erence p i = x i - y i is comput ed, which lies in t he range {2, 1, 0, 1}. The addit ion is expressed as: x i - y i = 2t i + u i , where t i is t he t ransf er digit and has value 1 or 0, and is - ; u i is t he int erim sum and has value eit her 0 denot ed as -t i + . t -1 is assigned t he value of 0. or 1 and is denot ed as u i 2. The sum digit s s i are f ormed as f ollows: s i = -t i-1 - + u i + Chap. 14 7

  8. Digit Radix 2 Digit Set Binary Code x i {1, 0, 1} x i + - x i - y i {0, 1} y i - p i = x i – y i {2, 1, 0, 1} 2t i + u i u i {0, 1} u i + - t i {1, 0} -t i s i = u i + t i- 1 {1, 0, 1} s i + - s i - Eight -digit hybrid radix-2 subt ract or Chap. 14 8

  9. Hybrid Radix- 2 Addition/ Subtraction Hybrid radix-2 adder/ subt ract or (A/ S = 1 f or addit ion and A/ S = 0 f or subt ract ion) •This is possible if one of t he operands is in radix-r complement represent at ion. Hybrid subt ract ion is carried out by hybrid addit ion where t he 2’s complement of t he subt rahend is added t o t he minuend and t he carry-out f rom t he most signif icant posit ion is discarded. Chap. 14 9

  10. Signed Binary Digit (SBD) Addition/ Subtraction • Y < r . α > = Y + - Y - , is a signed digit number, where Y + , α }. and Y - are f rom t he digit set {0, 1, … • A signed digit number is t hus subt ract ion of 2 unsigned convent ional numbers. • Signed addit ion is given by: r . α > + Y + - Y - , S < r . α > = X < r . α > + Y < r . α > = X < ⇒ S1 < r. α > = X < r. α > + Y + , r. α > - Y - S < = S1 r . α > < • Digit serial SBD adders can be derived by f olding t he digit parallel adders in bot h lsd-f irst and msd- f irst modes. • LSD-f irst adders have zero lat ency and msd-f irst adders have lat ency of 2 clock cycles. Chap. 14 10

  11. (a) Signed binary digit adder/ subt ract or (b) Def init ion of t he swit ching box Chap. 14 11

  12. Digit serial SBD redundant adders. (a) LSD-f irst adder (b) msd-f ir st adder Chap. 14 12

  13. Maximally Redundant Hybrid Radix- 4 Addition (MRHY4A) • Maximally redundant numbers are based on digit set D < . 4.3> S < = X < 4.3> - Y 4 4.3> • The f irst st ep comput es: x i + y i = 4t i + u i Replacing t he respect ive binary codes f rom t he t able t he f ollowing is obt ained : (2x i +2 - 2x i -2 + 2y i +2 ) + x i + - x i - + y i + = 4t i + + 2u i +2 - 2u i -2 - u i - A MRHY4A cell consist ing of t wo P P M adders is used t o comput e t he above. • St ep 2 comput es comput es s i = t i-1 + u i . Replacing s i , u i , and t i-1 by corresponding binary codes leads t o s i +2 = u i +2 , s i -2 = u i -2 , s i + =t i-1 + and s i - = u i - . Chap. 14 13

  14. Digit Radix 4 Digit Set Binary Code x i {3, 2, 1, 0, 1, 2, 3} 2x i +2 – 2x i -2 + x i + - x i - y i {0, 1, 2, 3} 2y i +2 + y i + p i = x i + y i {3, 2, 1, 0, 1, 2, 3, 4, 5, 6} 4t i + u i u i {3, 2, 1, 0, 1, 2} 2u i +2 – 2u i -2 - u i - t i {0, 1} t i + +2 - 2s i -2 + s i + - s i - s i = u i + t i- 1 {3, 2, 1, 0, 1, 2, 3} 2s i Digit set s involved in Maximally Redundant Hybrid Radix-4 Addit ion Chap. 14 14

  15. MRHY4A adder cell Four-digit MRHY4A Chap. 14 15

  16. Minimally Redundant Hybrid Radix- 4 Addition (mrHY4A) • Minimally redundant numbers are based on digit set D < 4.2> . S < = X < 4.2> - Y 4 4.2> • The f irst st ep comput es: x i + y i = 4t i + u i Replacing t he respect ive binary codes f rom t he t able t he f ollowing is obt ained : (- 2x i -2 + 2y i +2 ) + (x i + + x i ++ + y i + ) = 4t i + - 2u i -2 + u i + A mrHY4A cell consist ing of one P P M adder and a f ull adder is used t o comput e t he above. • St ep 2 comput es comput es s i = t i-1 + u i . Replacing s i , u i , and t i-1 by corresponding binary codes leads t o s i -2 = u i -2 , s i ++ = t i-1 + and s i + = u i + . Chap. 14 16

  17. Digit Radix 4 Digit Set Binary Code x i {2, 1, 0, 1, 2} – 2x i -2 + x i + + x i ++ y i {0, 1, 2, 3} 2y i +2 + y i + p i = x i + y i {2, 1, 0, 1, 2, 3, 4, 5} 4t i + u i u i {2, 1, 0, 1} 2u i +2 – 2u i -2 - u i - t i {0, 1} t i + -2 + s i + + s i ++ s i = u i + t i- 1 {2, 1, 0, 1, 2} 2s i Digit set s involved in Minimally Redundant Hybrid Radix-4 Addit ion Chap. 14 17

  18. mrHY4A adder cell Four -digit mr HY4A Chap. 14 18

  19. Non- redundant to Redundant Conversion • Radix-2 Represent at ion : A non-redundant number X = x 3 .x 2 .x 1 .x 0 can be convert ed t o a redundant number Y = y 3 .y 2 .y 1 .y 0 , where each digit y i is + and y i - as shown below: encoded as y i Chap. 14 19

  20. • Radix-4 represent at ion : – radix-4 maximally redundant number : X is a radix-4 complement number, whose digit s x i are encoded +2 + x i + . I t s corresponding using 2 wires as x i = 2x i maximally redundant number Y is encoded using y i = 2y i +2 - 2y i -2 + y i + - y i - . The sign digit x 3 can t ake values -3, -2, -1 or 0, and is encoded using x 3 = -2x 3 -2 - x 3 - . Chap. 14 20

  21. – radix-4 minimally redundant number: X is a radix- 4 complement number, whose digit s x i are encoded using 2 wires as x i = 2x i +2 + x i + . I t s corresponding minimally redundant number Y is encoded using y i = -2y i -2 + y i + + y i ++ . To convert radix-r number x t o redundant number y < r . α > , t he digit s in t he range [ α , r - 1] are encoded using a t ransf er digit 1 and a corresponding digit x i - r where x i is t he i t h digit of x. Thus, +2 + x i + = 4x i +2 - 2x i +2 + x i + 2x i = y i+1 ++ - 2y i -2 + y i + Chap. 14 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend