e 324 optical visualization of beam driven plasma
play

E-324: Optical visualization of beam-driven plasma wakefield - PowerPoint PPT Presentation

FACET-II Science Workshop 30 October 2019 E-324: Optical visualization of beam-driven plasma wakefield accelerators Mike Downer, R. Zgadzaj + J. Brooks, I. Pagano (PhD students) University of Texas at Austin + SLAC staff: M. Hogan, V.


  1. FACET-II Science Workshop 30 October 2019 E-324: Optical visualization of beam-driven plasma wakefield accelerators Mike Downer, R. Zgadzaj + J. Brooks, I. Pagano (PhD students) University of Texas at Austin + SLAC staff: M. Hogan, V. Yakimenko & others + FACET-II collaborators: M. Litos (UC-Boulder) & students, K. Marsh (UCLA) & others + computational collaborators: T. Silva, J. Vieira (IST); K. Lotov & students (Budker Inst.) E-324 Scientific Goal: Observe, analyze, understand on-axis PWFA structures* that were invisible to us in E-224 (FACET-I) * (1) ion-density peak, hollow channel (∆ t ~ 10-20 ps); (2) blowout-regime electron-wake (∆ t ~ 0 + ) I. Summary of E-224 Results from FACET-I R. Zgadzaj et al ., “Dissipation of electron-beam-driven plasma wakes,” submitted for publication. II. E-324 FACET-II experimental plans (1) lower n e ; (2) shorter interaction region; (3) larger probe angle; (4) better optical resolution

  2. In FACET-I, we imaged near-field diffraction patterns of an ion wake in a single shot heat-pipe oven θ = 8 mrad e- ptychography? 1.5 m bunch E e = 20 GeV - z 1 0 + z 1 Q = 2.4 nC σ r = 30 µm σ z = 55 µm Li vapor f /40 lens n a = 0.8e17 cm -3 E pr = 1 mJ λ pr = 0.8 µm CCD ∆t σ r = 0.5 cm probe τ pr = 0.1 ps image plane jitter ~ 0.1 ps 2 normalized intensity [arb. units] 2 0.03 ns 0.3 ns ∆t < 0 radial position 0 [mm] 2 1 2 10 µs 0.9 ns 0.6 ns 0 2 0 0 0 -30 30 -30 30 -30 0 30 longitudinal position in heat-pipe oven [cm]

  3. LCODE-simulated n e (r) profiles reconstruct observed fringe patterns at ∆t ≥ 0.1 ns MEASURED CALCULATED calculations by K. V. Lotov, including impact ionization original ions only V. K. Khudyakov, A. Sosedkin 2 2 equivalent radius in interaction region [mm] 0 100 ps [arb. units] 2 2 0 300 ps 2 1 2 0 normalized intensity 600 ps 2 2 0 900 ps 0 2

  4. Our FACET-II scientific goal: observe, analyze & understand on-axis PWFA structures* FACET-I geometry planned for FACET-II * 1) At ∆t ~ 10-20 ps: on-axis ion density peak, quasi-hollow channel favorable for focused positron accleration • A. A. Sahai, Phys. Rev. Accel. Beams 20 , 081004 (2017) • T. Silva, J. Vieira et al ., forthcoming presentation at this workshop. * 2) At ∆t < 1 ps: strongly nonlinear electron wake b) e - vs. e + driven wakes a) pre-ionized vs. self-ionized plasma c) transverse wake instabilities: dependence on drive bunch shape, pre-formed plasma

  5. FACET-II’s shorter Li oven & lower n e enable steeper θ probe , optical access to interior plasma structures 2.34 m Bellows angle when bypass pipe is used during alignment 6” cube FACET I Bypass pipe 3” beam-ionized Li ( n e = 8e17 cm -3 ) Oven pipe Cooling Gate f/# 60 jacket valve Pipe wall (3.175cm) 3.81cm 1.125” 1.25” limiting optical aperture 1.22 m wick Oven pipe transverse dimensions the same for FACET I and II 8” cube Bypass pipe 4” Bellows angle when oven pipe Oven pipe is used during experiments FACET II f/# 25 laser pre-ionized Li ( n e = 5e17 cm -3 , r p ~ 200 µm) Enlarged output cube (6” à 8”) & output mirror (3” à 4” diam.) improve probe collection efficiency. Lower f # lens (60 à 25) improves imaging resolution.

  6. Simulated probe images show signatures of evolving on-axis ion density maxima • laser pre-ionized Li plasma • r p ≈ 200 µm • λ pr = 800 nm • n e = 3.5 x 10 16 cm -3 t 3 ≈ 22 ps t 2 ≈ 16 ps t 1 ≈ 7 ps • θ pr = 20 mrad 200 OSIRIS plasma simulations by T. Silva, IST on- axis peak light 0 interior hollow channel 200 µm probe simulations by R. Zgadzaj, UT-Austin Li refractive index

  7. Probe at θ pr = 8 mrad less sensitive to on-axis plasma structures • laser pre-ionized Li plasma • r p ≈ 200 µm • λ pr = 800 nm • n e = 3.5 x 10 16 cm -3 t 1 ≈ 7 ps t 2 ≈ 16 ps t 3 ≈ 22 ps • θ pr = 8 mrad 200 OSIRIS plasma simulations by T. Silva, IST dark 0 interior 200 µm probe simulations by R. Zgadzaj, UT-Austin Li refractive index

  8. Shape of plasma column edge influences how on-axis structures modify probe image • laser pre-ionized Li plasma • r p ≈ 200 µm • λ pr = 800 nm • n e = 3.5 x 10 16 cm -3 t 1 ≈ 7 ps • θ pr = 20 mrad 200 OSIRIS plasma simulations by T. Silva, IST 0 Image of probe (∆ t ≈ +20 ps) can be normalized to 200 200 µm image of reference pulse (∆ t ≈ -1 ps) to correct for this. probe simulations by R. Zgadzaj, UT-Austin plasma edge: super- plasma edge: super- Gaussian order 20 Gaussian order 8 Li refractive index

  9. • laser pre-ionized Li plasma • r p ≈ 200 µm • λ pr = 800 nm • n e = 3.5 x 10 16 cm -3 t 1 ≈ 7 ps • θ pr = 20 mrad 200 OSIRIS plasma simulations by T. Silva, IST 0 200 µm simulated reference pulse image probe simulations by R. Zgadzaj, UT-Austin plasma edge: super- Gaussian order 8 Li refractive index

  10. At 0.5 > ∆t > 0.2 ps, probe remains within 1 st bucket of electron wake for 20 cm Geometric walkoff @ θ pr = 20 mrad: +40 µm probe Group-velocity walkoff: -2 µm Walk-off ~38μm 20 mrad e-bunch e-bunch Overlap region ~ 20cm* probe * for 4 mm wide probe (4σ diameter) and wake axis @ θ pr = 20 mrad

  11. Under FACET-II conditions, a fully-blown-out e-beam-driven wake will be visible • laser pre-ionized Li plasma • r p ≈ 200 µm • λ pr = 800 nm bkgd. plasma bkgd. plasma • n e = 3.5 x 10 16 cm -3 only; no wake • θ pr = 20 mrad + electron wake ∆ t ≈ 0.3 ps 200 fully-blown-out bubble 0 200 µm probe simulations by R. Zgadzaj, UT-Austin Li refractive index

  12. The simulations motivate additional experimental upgrades for PWFA imaging PROBE independent of ionizing laser UPGRADES: PROBE (1) double θ pr à probe interior plasma structures (2) reduce f # à higher image resolution θ pr = a (3) install NL phase con- L p = Plasma oven length 20 mrad trast optics à improve sensitivity to n e < 10 16 cm -3 (4) install multiple image- object planes + reference à distinguish on-axis from edge structures. ionizing laser beam apre-tested in our U. Texas lab FS CCD 3 CCD 2 CCD 1 L1 Li, Opt. Lett. 38 , 5157 (2013) phase- contrast multiple image planes

  13. Later FACET-II Experiments He/H 2 chamber with transverse optical access will enable Faraday profiling* of magnetized PWFAs * LWFA expts.: Kaluza, PRL 105 , 11502 (2010); Buck, Nat. Phys . 7 , 453 (2011) [ n e > 10 19 cm -3 ] ~ longitudinal Chang, PhD (2018) [ n e ~ 10 17 cm -3 ] probe UPGRADES: transverse probe (1) double θ pr à probe interior plasma structures (2) reduce f # à higher image resolution (3) install NL phase con- trast optics à improve sensitivity to n e < 10 16 cm -3 CCD Cotton- (4) install multiple image- Faraday ro- Mouton object planes + reference tation optics optics à distinguish on-axis from CCD ! ! ! ! k pr ⊥ edge structures. B φ k pr || B φ b (5) install Faraday/C-M probes à sensitive profil- probe of: (1) bubble sheath structure & dynamics ing of low- n e structures bpre-tested in Texas PW expts. (2) external or Trojan horse e - -injection Chang, PhD dissertation (2018)

  14. Faraday rotation picks out dense bubble wall in tenuous plasma Based on technique developed by: Kaluza, PRL 105 , 115002 (2010) ; Buck, Nat. Phys . 7 , 453 (2011) in n e > 10 19 cm -3 plasma ; results shown from Chang, PhD dissertation, UT-Austin (2018) Faraday probe setup Faraday rotation results Texas PW probe pump probe 2 GeV 100 J, 150 fs pump e - e-bunch 10 cm gas cell ~10cm Gas cell ( n e0 = 2•10 17 cm -3 ) anamorphic Anamorphic Imaging System imaging CCD CCD polarizer Cubic Polarizer polarizer Cubic Polarizer CCD CCD • separation of ± lobes: bubble size 4 • |∆ ϕ Faraday |: bubble wall density measure- • width of each lobe: bubble wall thickness ments • longitudinal variations: bubble evolution

  15. SUMMARY • In FACET-II, we will visualize on-axis e- and ion-wake structures, taking advantage of larger θ pr , higher-resolution imaging, lower n e than in FACET-I. ∆ t ≥ 30 ps ∆ t < 1 ps (1) on-axis ion-density peak (3) e-wake structure & propagation dynamics (2) hollow-channels (4) transverse & longitudinal e-wake instabilities • Our simulations show that our probe will illuminate these structures well, and provide clear optical signatures of them... • ... but there are challenges. Probe images are... ... low contrast à use phase-contrast imaging ... convolved with plasma-edge signatures à use probe-reference pulse pair.

  16. II. Overview of FACET-I results (E-224) OSIRIS 1 simulations show nonlinear e-wake excitation & early (∆t < 40 ps) ion response e-bunch density [e cm -3 ] simulations by T. Silva, J. Vieira (IST) 10 15 10 16 10 17 10 18 plasma density n e [10 17 cm -3 ] OSIRIS 1 framework 2 incident e-bunch Massivelly Parallel, Fully · Relativistic PIC Code Visualization & Data · 1 Analysis Infrastructure moving window ionization & NL e-wake excitation Developed by Osiris Con- · sortium, UCLA + IST 0 1 Fonseca et al ., PPCF 55 , 124011 (2013) fixed window ∆ t = 40ps E r ( z ) (∆ t = 1 ps) < E r > 2 experiment radial distance [mm] 0 2 fixed window reconstruction 2 ρ Li+ ( z ) (∆ t = 40 ps) < ρ Li+ > 0 2 -20 0 20 longitudinal distance [cm]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend