plasma physics
play

Plasma Physics Introduction A. Flacco Structure The plasma state - PowerPoint PPT Presentation

Plasma Physics Introduction A. Flacco Structure The plasma state 5 Debye screening 16 Plasma oscillations 18 Plasma Parameters 19 Single particle motions 20 A. Flacco/ENSTA - PA201: Introduction Page 2 of 27 Plasmas?


  1. Plasma Physics Introduction A. Flacco

  2. Structure • The plasma state 5 • Debye screening 16 • Plasma oscillations 18 • Plasma Parameters 19 • Single particle motions 20 A. Flacco/ENSTA - PA201: Introduction Page 2 of 27

  3. Plasmas? (hot/cold, dense/rarefied, . . . ) (d) (a) (b) (c) (f) (e) (g) (h) A. Flacco/ENSTA - PA201: Introduction Page 3 of 27

  4. Plasmas a Candle flame: T = 1000 K − 1400 K, very low ionization; b Orion nebula (M42): T e = 10 4 K, n e = 10 2 − 10 4 cm − 3 ; c Laser produced plasma: T e ∼ keV, T i = 300 K, n e = 10 19 cm − 3 ; d Glow discharge: n = 10 10 cm − 3 , T e = 2 eV; e Joint European Torus (JET): n = 10 25 cm − 3 , k B T e = 100 eV; f Cyclotron proton beam: r = 1 cm, I = 80 pA, K = 230 MeV; g Van Allen Belts (inner and outer): 10 4 to 10 9 particles / cm 2 s, electrons up to 5 MeV, protons up to 400 MeV; h Thruster exhaust: T ∼ 3500 K, pressure 100 bar. A. Flacco/ENSTA - PA201: Introduction Page 4 of 27

  5. Different kinds of plasmas Coupling parameter Ξ: Ξ ≡ |� E p �| � E c � A. Flacco/ENSTA - PA201: Introduction Page 5 of 27

  6. The Plasma State A plasma is a quasineutral gas of charged and neutral particles which ex- hibits collective behaviour (F. Chen) À très haute temperature, la dissociation puis l’ionisation conduisent à la création de populations d’ions et d’électrons libres et ces charges libres induisent un comportement collectif, non linéaire, chaotique et turbulent. (J.-M. Rax) A. Flacco/ENSTA - PA201: Introduction Page 6 of 27

  7. Temperature & ionization Creation of a plasma First Electron Ionization Energy Alkali metal Alkaline earth metal Transition metal 30 Post-transition metal Metalloid He Nonmetal 25 Ionization Energy [eV] Halogen Ne Noble gas 20 Lanthanide Actinide Ar Kr 15 Xe Rn Hg 10 5 Li Na K Rb Cs Fr 0 0 10 20 30 40 50 60 70 80 90 100 Atomic Number A. Flacco/ENSTA - PA201: Introduction Page 7 of 27

  8. Saha Law Ionization degree in a gas Saha Law: n m +1 n e 2 g m +1 � 2 . 4 × 10 21 � T 3 / 2 e − U m +1 / k B T = n m g m Ionization at thermal equilibrium Atmosphere ( N 2 , n i ∼ 10 25 m − 3 , T = 300K): 10 0 n i ≈ 10 − 245 10 -50 n n 10 -100 Glow discharge tube n i /n n ( Ne , n i ∼ 10 16 m − 3 , 10 -150 T e ∼ 10 4 K): 10 -200 n i Na U i =5.13 eV ≈ 3 . 1 n n N U i =14.5 eV 10 -250 He U i =24.59 eV ( Attention: this is false!) 10 -300 10 2 10 3 10 4 10 5 T [K] A. Flacco/ENSTA - PA201: Introduction Page 8 of 27

  9. Saha Law Oxygen ionization vs. temperature 6 O O1 O2 O3 O4 5 O5 O6 e- 4 Relative abundance 3 2 1 0 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 Temperature K A. Flacco/ENSTA - PA201: Introduction Page 9 of 27

  10. Temperature: a review In a gas at thermal equilibrium, atoms follow the Boltzmann distribution: � 2 π k B T � − 3 / 2 e − m v · v / 2 k B T f ( v ) = N m Average kinetic energy (in 3D) gives: � E � = 1 � 1 2 m ( v · v ) f ( v ) d v 3 = 3 2 k B T N R 3 A. Flacco/ENSTA - PA201: Introduction Page 10 of 27

  11. Boltzmann energy distribution Boltzmann distribution on velocity is formed by three (in 3D) independent distributions, with a void mean velocity; the width of the distribution is defined by the temperature. m � 1 / 2 � e − mv 2 i / 2 k B T f ( v i ) = 2 π k B T It is easily calculated that: σ v i = √ k B T     � v i � = 0     i � = k B T � v 2 m     � v 2 � = 3 k B T    m A. Flacco/ENSTA - PA201: Introduction Page 11 of 27

  12. Maxwell-Boltzmann velocity distribution The speed distribution (Maxwell-Boltzmann) is obtained by integrating over ( θ, φ ) in polar coordinates. � 2 π � π � 2 π k B T � − 3 / 2 v 2 e − mv 2 / 2 k B T f ( v ) d v = d φ sin ( θ ) d θ m 0 0 = 4 π v 2 � 2 π k B T � − 3 / 2 e − mv 2 / 2 k B T m From the M-B distribution the most probable speed v m and the mean speed are calculated: � 2 k B T � 1 / 2  v m =  m  � 8 k B T � 1 / 2 � v �  =  π m A. Flacco/ENSTA - PA201: Introduction Page 12 of 27

  13. Temperature in a Plasma A Plasma is ionized matter: interaction between particles happens through Lorentz Force: F = q ( E + v × B ) In a plasma, different species can have different temperatures (eg. T i , T e ), each species in its own thermal equilibrium. Temperatures are often expressed in eV via the Boltzmann constant: k B = 1 . 38 · 10 − 23 J K − 1 = 8 . 6 · 10 − 5 eV K − 1 In particular conditions there can exist different components in temperature (eg. T � , T ⊥ ). A. Flacco/ENSTA - PA201: Introduction Page 13 of 27

  14. Long range interaction Coulomb vs. Lennard-Jones �� σ � σ � 12 � � 6 ϕ LJ ( r ) = − 4 ε 1 q 1 q 2 − ϕ C ( r ) = r r 4 πε 0 r H 2 molecule: ε/ k B = 37 K, σ = 2 . 98 Å 10 25 LJ 12-6 Coulomb 10 20 10 25 10 15 10 20 10 15 10 10 10 10 10 5 10 5 V(r)/J V(r)/J 10 0 10 -5 10 0 10 -10 10 -15 10 -5 10 -20 10 -25 10 -10 0.001 0.01 0.1 1 10 100 1000 10000 r/Å 10 -15 10 -20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 A. Flacco/ENSTA - PA201: Introduction r/Å Page 14 of 27

  15. The Plasma State Parameters and evolution Ionization Coupling Neutrality parameter Parameter Parameter n e Ξ ≡ |� E p �| ε ≡ n e − Zn i α ≡ n e + n n n e + Zn i � E c � α < 1: weak ε ≪ 1: Ξ ≪ 1: weak ionization quasi-neutrality, coupling, kinetic or ideal plasma α ≈ 1: strong ε ≤ 1: beams, ionization space charge Ξ ≥ 1: strong coupling, fluid, effects cristalline A. Flacco/ENSTA - PA201: Introduction Page 15 of 27

  16. Debye Screening ✰ ✰ ✰ ✰ P❧❛s♠❛ ✰ ✰ ✲ ✰ ✲ ✲ ✰ ✲ ✰ ✲ ✰ ✰ ✲ ✲ ✲ ✲ ✰ ✲ ✲ ✲ ✰ ✲ ✲ ✲ ✲ ✰ ✰ ✲ ✲ ✲ ✲ ✰ ✰ ✲ ✰ ✰ ✰ ✲ ✲ ✲ ✰ ✰ ✲ ✰ ✲ ✲ ✰ ✲ ✲ ✰ ✰ ✕ ✰ ✰ ✰ ✰ ✲ ✰ ✰ ✰ ✲ ✲ ✲ ✲ ✰ ✰ ✰ ✲ ✰ ✲ ✲ ✰ ✰ ✰ ✰ ✲ ✰ ✰ ✲ ✰ ✲ ✲ ✰ ✲ ✰ ✰ ✰ ✲ ✰ ✲ ✲ ✲ ✲ ✲ ✲ ✰ ✲ ✰ A. Flacco/ENSTA - PA201: Introduction Page 16 of 27

  17. Debye Screening A test charge introduced in a plasma at the equilibrium perturbs the speed distribution according to: � 1 1 � 2 mu 2 + q φ � � f ( v ) ∝ exp − k B T e where the potential φ must obey Poisson’s law: ε 0 ∇ 2 φ = − e ( n e − n i ) . Plasma charges re-organize to screen the test charge; the new effective potential decreases with an exponential law with the characteristic length λ D : Debye Length: � ε 0 k B T λ D ≡ ne 2 The plasma parameter is the number of charges in a Debye sphere: N D ≡ n 4 3 πλ 3 D ≫ 1 A. Flacco/ENSTA - PA201: Introduction Page 17 of 27

  18. Plasma Oscillation Gauss Law: ∇ · E = ( e /ε 0 ) ( n i − n e ) + + + + + Electron continuity equation: − − − − ∂ n e + + + + + ∂ t + ∇ · (un e ) = 0 − − − − Lorentz force: + + + + + ∂ t = − e ∂ u m E + + + + + E E Electron plasma frequency: − − − − � 1 / 2 � n 0 e 2 + + + + + rad s − 1 ω pe = ε 0 m e E E − − − − + + + + + A. Flacco/ENSTA - PA201: Introduction Page 18 of 27

  19. Plasma parameters and plasma definition A plasma is a quasineutral gas of charged and neutral particles which ex- hibits collective behaviour λ D ≪ L N D ≫ 1 ωτ > 1 A. Flacco/ENSTA - PA201: Introduction Page 19 of 27

  20. Single Particle Motions B 0 = B 0 ˆ z, E 0 = 0 B = B ^ z × B Cyclotron frequency: ω c ≡ | q | B m ✲ + Larmor radius: r L ≡ v ⊥ = mv ⊥ | q | B ω c Motion around a guiding center: ❣✉✐❞✐♥❣ ❝❡♥t❡r x − x 0 = r L sin ( ω c t ) , y − y 0 = ± r L cos ( ω c t ) This describes a circular orbit around a guiding center ( x 0 , y 0 ) which is fixed . The magnetic field generated by the gyration is opposite to the externally imposed field. Plasma is therefore diamagnetic . Arbitrary component v z along B in unaffected: charged particles in space generally follow helicoidal trajectory. A. Flacco/ENSTA - PA201: Introduction Page 20 of 27

  21. Single Particle Motions B = B 0 ˆ z , E = ( E x , 0 , E z ) On the ˆ z component: d v z = q m E z ⇒ v z = qE z m t + v z 0 d t On the orthogonal components: � v x � d v x q = m E x ± ω c v y = v ⊥ exp i ω c t d t − → ± i v ⊥ exp i ω c t − E x d v y v y = = 0 ∓ ω c v x B d t Drift velocity superimposed on the guiding center: v gc = E × B / B 2 ≡ v E , v E = E / B A. Flacco/ENSTA - PA201: Introduction Page 21 of 27

  22. Single Particle Motions: ∇ B drift B 0 � = 0 , E 0 � = 0 , ∇ B ⊥ B The average is taken on the unperturbed orbit. F y = − qv x B z ( y ) ❡ B 0 ± r L (cos ω c t ) ∂ B � � = − qv ⊥ (cos ω c t ) ∂ y v ∇ B � q � 1 B × ∇ B v ∇ B = − 2 v ⊥ r L e B 2 ∇ B B The gradient | B | causes the Larmor radius to be larger in lower field regions, thus resulting in a drift perpendicular to the gradient. A. Flacco/ENSTA - PA201: Introduction Page 22 of 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend