heavy ions at lhc
play

Heavy Ions at LHC R. Lietava The University of Birmingham 0 - PowerPoint PPT Presentation

Heavy Ions at LHC R. Lietava The University of Birmingham 0 Outlook QGP Event characterisation Soft probes I nterferom etry Multiplicity, Transverse energy, Energy density Flow and correlations Hard Probes


  1. Heavy Ions at LHC R. Lietava The University of Birmingham 0

  2. Outlook  QGP  Event characterisation  Soft probes  I nterferom etry  Multiplicity, Transverse energy, Energy density  Flow and correlations  Hard Probes  Quarkonia  Jet quenching  High pt suppression ( h - ,D0 ,J/ ψ , γ,Z ,...)  Reconstructed jets  Sum m ary 23/ 11/ 2011 Birmingham

  3. Quantum ChromoDynamics (QCD) QCD confinement – free quarks never observed ! QCD vacuum not well understood. Heavy ions – study QCD at high temperature and density 23/ 11/ 2011 Birmingham

  4. Quark Gluon Plasma  Latice QCD: transition hadrons -> quarks and gluons QGP is not ideal gas ! ε π   2 T 4 7 = = +   p g g B F   3 8 90 g B =8 c *2 s =16 g F =3 f *3 c *2 s *2 a =36  Relativistic Heavy Ion Collider (RHIC):  Macroscopic liquid:  System size > mean free path  System lifetime > relaxation time  Perfect: shear viscosity/ entropy ~ 0  LHC :  System is bigger, denser, hotter  Abundant production of hard probes 23/ 11/ 2011 Birmingham

  5. LHC Heavy Ion Program LHC Heavy Ion Data-taking Design: Pb + Pb at √ s NN = 5.5 TeV (1 month per year) Nov. 2010: Pb + Pb at √ s NN = 2.76 TeV • LHC Collider Detectors - ATLAS - CMS - ALICE 23/ 11/ 2011 Birmingham

  6. Pb–Pb Luminosity B.Wyslouch, CMS, EPIC2011 Delivered integrated luminosity ~ 9 µ b -1 Luminosity achieved L = 2–3 x 10 25 cm -2 s -1 ATLAS very similar to CMS ALICE recorded ~ 50% due to TPC dead time 23/ 11/ 2011 Birmingham

  7. Heavy Ion Collision Centrality Controls the volume and shape of the system Multiplicity and energy of produced particles are correlated with geometry of collisions. Measured distribution: • Track multiplicity • Transverse energy • Forward energy b Participants Variables: (10) • impact parameter => Collisions • participants • collisions (18) • percentile of x section Plane perpendicular y Beam direction to beam direction x 23/ 11/ 2011 Birmingham

  8. Centrality selection ALICE S.White, ATLAS, EPIC2011 B.Wyslouch, CMS,EPIC2011 M.Nicassio, ALICE, EPIC2011 23/ 11/ 2011 Birmingham

  9. Soft Probes  Interferometry of identical particles  Charged particle multiplicity , E T , ε  Transverse momentum spectra  Radial flow  Anisotropic flow 8

  10. System size  Spatial extent of the particle emitting source extracted from interferometry of identical bosons  Two-particle momentum correlations in 3 orthogonal directions -> HBT radii (R long , R side , R out )  Size: twice w.r.t. RHIC  Lifetime: 40% higher w.r.t. RHIC ALICE: PLB696 (2011) 328 ALICE: PLB696 (2011) 328 9 9 F.Prino,SQM2011

  11. Multiplicity, E T and ε  Particle Production and Energy density ε:  Produced Particles: dN ch / d η ≈ 1600 ± 7 6 ( syst) ≈ 30,000 particles in total, ≈ 400 times pp !  somewhat on high side of expectations (tuned to RHIC)  growth with energy faster in AA  E 1 dE Energy density ε > 3 x RHI C (fixed τ 0, ) ε τ = =  T ( ) CMS, QM2011 τ V A dy  Tem perature + 3 0 % 0 23/ 11/ 2011 Birmingham

  12. Charged particle spectra Radial Flow • K, π, p spectra 0-5% central collisions • Very clear flattening and higher tails at √ s NN =2.76 TeV • Quantify with blastwave parameter studies: radial flow β =v 0 /c and freezout temperature T fo β = 0.66 T fo ~110 MeV L.Barnby , ALICE, EPIC2011 23/ 11/ 2011 Birmingham

  13. Anisotropic Flow  Fourier expansion in azimuthal distribution: dN 1 dN ( ) = + ϕ − ψ + ϕ − ψ + 1 2 v cos( ) 2 v cos( 2 ( )) ... ϕ π 1 1 2 2 p dp dyd 2 p dp dy T T T T  φ – azimuthal angle In non-central collisions participant area is not azimuthally symmetric: system evolution transfer this anisotropy from coordinate space to momentum space v 1 - direct flow v 2 - elliptic flow, dominant for system Collision Plane : symmetric wrt Collision Plane 12 - Defined by Beam and Impact Parameter

  14. Elliptic flow - v 2 Adopted from R.Snellings 23/ 11/ 2011 Birmingham

  15. Physics of elliptic flow Elliptic flow depends on:  Initial conditions  Fluid properties  Equation of state  Shear viscosity η = < > λ =< > σ Shear viscosity: n p p / Small viscosity η = > large cross section σ = > strongly interacting fluid 23/ 11/ 2011 Birmingham

  16. R.Snellings, ALICE 23/ 11/ 2011 Birmingham Heavy ions in LHC: experimental 15 EPIC Bari

  17. Hydrodynamics and v 2  comparison of identified particles v 2 (p T ) with hydro prediction – mass splitting described (calculation by C Shen et al.: arXiv: 1105.3226 [ nucl-th] )  Protons are to be understood  23/ 11/ 2011 Birmingham

  18. Fluctuations  v 3 “ideal” shape of participants’ overlap  is ~ elliptic  in particular: no odd harmonics expected  participants’ plane coincides with event plane but fluctuations in initial conditions:   participants plane != event plane Matt Luzum (QM 2011)  v 3 (“triangular”) harmonic appears [ B Alver & G Roland, PRC81 (2010) 054905] v 2 and indeed, v3 != 0 !  v 3 has weaker centrality dependence  than v 2 v 3 ALICE: PRL 107 (2011) 032301 23/ 11/ 2011 Birmingham

  19. Higher harmonics S.White, ATLAS, EPIC2011 • v n+1 < v n • v n+1 less centrality dependent than v n M.Issah, CMS, EPIC2011 dN 1 dN ( ) = + ϕ − ψ + ϕ − ψ + 1 2 cos( ) 2 cos( 2 ( )) ... v v ϕ π 2 2 3 3 p dp dyd 2 p dp dy T T T T v n – information on viscosity, n > 2 23/ 11/ 2011 Birmingham

  20. 2 Particle Correlations and Flow  Fourier expansion in azimuthal distribution: dN ( ) = + ∆ ϕ + ∆ ϕ + 1 2 v cos( ) 2 v cos( 2 ) ... ∆ ϕ 1 2 d = A T  I f flow dom inates than: v v * v i i i Flow Fourier coefficients ∆ ϕ = ϕ − ϕ T A 23/ 11/ 2011 Birmingham

  21. Flow vs Non-Flow Correlations  Compare single calculated values with global fit  To some extent, a good fit suggests flow-type correlations, while a poor fit implies non- flow effects  v 2 to v 5 factorize until p T ~ 3-4 GeV/ c, then jet-like correlations dominate  v 1 factorization problematic (influence of away- side jet) Jan Fiete Grosse-Oetringhaus – ALICE 23/ 11/ 2011 Birmingham

  22. Anisotropic Flow Summary  Centrality and p t dependences of various v n constraint  initial conditions (CGC vs Glauber)  viscosity – η / s  There is no hydro calculation (yet) describing simultaneously data on v 2 and v 3 ,… .  2 particle correlations consistent with flow for p T < 3-4 GeV/ c 23/ 11/ 2011 Birmingham

  23. Speaking of which… Full Fourier decom position of the CMS pp ridge? 23/ 11/ 2011 Birmingham

  24. The nuclear modification factor  quantify departure from binary scaling in AA  ratio of yield in AA versus reference collisions  e.g.: reference is pp  R AA Yield 1 = ⋅ AA R AA Yield Nbin pp AA or peripheral AA  R CP (“central to peripheral”)  … Nbin Yield AA, periph = AA, central ⋅ R cp Yield Nbin AA, periph AA, central 23/ 11/ 2011 Birmingham

  25. Quarkonia suppression  In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ D (analogous to e.m. Debye screening):  Charmonium (cc) and bottonium (bb) states with r > λ D will not bind; their production will be suppressed  Recombination of cc and bb regenerates quarkonia 24

  26. J/ ψ @ LHC: forward y, low p T  LHC: 2.5 < y < 4, p T > 0 (ALICE)  Less suppression than RHI C : 1.2 < y < 2.2, p T > 0 (PHENIX)  As suppressed as RHIC: | y| < 0.35. pT > 0 (PHENIX) Yield 1 = ⋅ AA R AA Yield Nbin pp AA Recombination ? Ginés Martínez – ALICE (QM2011) 23/ 11/ 2011 Birmingham

  27. J/ ψ @ LHC: central y, high p T Yield 1 = ⋅ LHC: | y| < 2.4, p T > 6.5 GeV/ c (CMS) prompt J/ ψ AA  R AA Yield Nbin pp AA CMS: PAS HIN-10-006 ATLAS: PLB 697 (2011) 294  m ore suppressed than RHI C:  | y| < 1. pT > 5 GeV/ c (STAR) inclusive J/ ψ 23/ 11/ 2011 Birmingham

  28. Υ ( 1 S) suppression CMS: PAS HIN-10-006 23/ 11/ 2011 Birmingham

  29. Υ (2S+3S) suppression  additional suppression for Υ (2S+ 3S) w.r.t. Υ (1S) ? CMS: arXiv: 1105.4894 23/ 11/ 2011 Birmingham

  30. Quarkonia Summary  Υ and J/ψ suppressed by same amount ?  Suppression depends on y and pt  the future runs should allow us to establish quantitatively the complete quarkonium suppression(/ recombination?) pattern  high statistic measurements  open flavour baseline / contamination  pA baseline 23/ 11/ 2011 Birmingham

  31. Jets in medium h Leading hadron Fragmentation c radiated radiated gluons gluons a b p a = x a P p b = – x b P d heavy nucleus heavy nucleus Key prediction : jets are quenched • collisional energy loss (Bjorken) • radiative energy loss (Wang and Gyulassy) 30 J .D. Bjorken Fermilab preprint PUB- 82/ 59- THY (August 1982). X.- N. Wang and M. Gyulassy, Phys . Rev . Lett . 68 (1992) 1480

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend