fluid models of plasma alec johnson
play

Fluid models of plasma Alec Johnson Centre for mathematical Plasma - PowerPoint PPT Presentation

Fluid models of plasma Alec Johnson Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven Nov 29, 2012 Presentation of plasma models 1 Derivation of plasma models 2 Kinetic Two-fluid MHD Conclusion Johnson (KU


  1. Fluid models of plasma Alec Johnson Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven Nov 29, 2012 Presentation of plasma models 1 Derivation of plasma models 2 Kinetic Two-fluid MHD Conclusion Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 1 / 40

  2. Outline 1 Presentation of plasma models 2 Derivation of plasma models Kinetic Two-fluid MHD Conclusion Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 2 / 40

  3. Modeling parameters Physical constants that define an Collisionless time, velocity, and space scale parameters: ion-electron plasma: p , s := n 0 e 2 ω 2 e (charge of proton), 1 plasma frequencies : , ǫ 0 m s m i , m e (ion and electron mass), 2 ω g , s := eB 0 gyrofrequencies : , 3 c (speed of light), m s ǫ 0 (vacuum permittivity). 4 t , s := 2 p 0 v 2 thermal velocities : , ρ s Fundamental parameters that B 2 characterize the state of a plasma: A , s := 2 p B v 2 0 Alfv´ en speeds : = , n 0 (typical particle density), 1 ρ s µ 0 m s n 0 � T 0 (typical temperature), 2 λ D := v t , s ǫ 0 T 0 Debye length : = n 0 e 2 , B 0 (typical magnetic field). 3 ω p , s r g , s := v t , s = m s v t , s Derived quantities: gyroradii : , ω g , s eB 0 p 0 := n 0 T 0 (thermal pressure) � δ s := v A , s c m s B 2 skin depths : = = µ 0 n s e 2 . p B := 2 µ 0 (magnetic pressure) 0 ω g , s ω p , s ρ s := n 0 m s (typical density). � v t , s � 2 = � r g , s � 2 . plasma β := p 0 p B = Collision periods: δ s v A , s v A , s = r g , s λ D = ω p , s τ sp : expected time for 90-degree c ω g , s . non-MHD ratio: deflection of species s via p . Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 3 / 40

  4. Plasma model hierarchy Particle Maxwell : discrete particles: ( x p ( t ) , v p ( t )) 1    � large number of particles (per “mesh cell”) Kinetic Maxwell : particle density functions: f s ( x , v ) 2    � fast collisions ( τ ss → 0). two-fluid Maxwell : one gas for each species: ρ s ( x ) , u s ( x ) , e s ( x ) 3    � fast light waves ( c → ∞ ), charge neutrality ( λ D → 0). extended MHD : gas that conducts electricity: ρ ( x ) , u ( x ) , e ( x ) , B ( x ) ; 4 J = µ − 1 0 ∇ × B , E = u × B + η J + · · · .    � small gyroradius ( r g → 0) and gyroperiod ( ω g → ∞ ). Ideal MHD : a perfectly conducting gas: E = u × B . 5 Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 4 / 40

  5. Fundamental model: particle-Maxwell (relativistic) Maxwell’s equations: Changing SI to Gaussian units: replace B with B / c . ∂ t B + ∇ × E = 0 , choose ǫ − 1 = 4 π . 0 ∂ t E − c 2 ∇ × B = − J /ǫ 0 , ∇ · B = 0 , ∇ · E = σ/ǫ 0 . Problem: model based on particles is not a computationally accessible standard of truth for Charge moments: most applications. σ := � p S p ( x p ) q p , Solution: replace particles with a particle density J := � function f s ( t , x , γ v ) for each species s . p S p ( x p ) q p v p , Particle equations: d t x p = v p , d t ( γ p v p ) = a p ( x p , v p ) , γ − 2 := 1 − ( v p / c ) 2 . p Lorentz acceleration: a p ( x , v ) = q p m p ( E ( x ) + v × B ( x )) Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 5 / 40

  6. 2-species kinetic-Maxwell (relativistic) Maxwell’s equations: “Collision” operator includes all microscale effects ∂ t B + ∇ × E = 0 , � ∂ t E − c 2 ∇ × B = − J /ǫ 0 , m ( C i + C e ) γ − 1 d ( γ v ) = 0 , conservation: where m = ( 1 , γ v , γ ) . ∇ · B = 0 , ∇ · E = σ/ǫ 0 . decomposed as: Charge moments: C ii + ← → σ := � � C i = � C ie , q s f s d ( γ v ) , s m s C ee + ← → C e = � J := � � C ei , q s v f s d ( γ v ) . s m s � m � C ss γ − 1 d ( γ v ) = 0 . where Kinetic equations: “collisionless”: ← → C sp ≈ 0 . ∂ t f i + v · ∇ x f i + a i · ∇ ( γ v ) f i = C i BGK collision operator ∂ t f e + v · ∇ x f e + a e · ∇ ( γ v ) f e = C e C ss = M s − f s � , τ ss Lorentz acceleration: where the entropy-maximizing distribution M shares a i = q i physically conserved moments with f : m i ( E + v × B ) , M = exp ( α · m ) , a e = q e m e ( E + v × B ) . � m ( M − f ) d ( γ v ) = 0 . Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 6 / 40

  7. 2-species kinetic-Maxwell (classical) Maxwell’s equations: “Collision” operator includes all microscale effects ∂ t B + ∇ × E = 0 , � ∂ t E − c 2 ∇ × B = − J /ǫ 0 , conservation: v m ( C i + C e ) = 0 , where m = ( 1 , v , � v � 2 ) . ∇ · B = 0 , ∇ · E = σ/ǫ 0 . decomposed as: Charge moments: C ii + ← → C i = � C ie , σ := � � q s f s d v , C ee + ← → s m s C e = � C ei , J := � � q s v f s d v . � � s m s v m � v m � C ii = 0 = C ee . where Kinetic equations: “collisionless”: ← → C sp ≈ 0 . ∂ t f i + v · ∇ x f i + a i · ∇ v f i = C i BGK collision operator ∂ t f e + v · ∇ x f e + a e · ∇ v f e = C e C ss = M s − f s � , τ ss Lorentz acceleration: where the Maxwellian distribution M shares physically conserved moments with f : a i = q i � � m i ( E + v × B ) , −| c | 2 ρ M = ( 2 πθ ) 3 / 2 exp , a e = q e 2 θ m e ( E + v × B ) . θ := �| c | 2 / 2 � . Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 7 / 40

  8. 2-fluid Maxwell Maxwell’s equations: Closures (neglect): Definitions:   R e d s ∂ t B + ∇ × E = 0 , t := ∂ t + u s · ∇ , en ≈ η · J + β e · q e ,   ∂ t E − c 2 ∇ × B = − J /ǫ 0 ,   c s := v − u s ,   R i = − R e ,   n s := ρ s / m s , ∇ · B = 0 , ∇ · E = σ/ǫ 0 .     Q s =: Q ex s + Q fr s ,   X ◦ := X + X T − I tr X   Charge moments: .   ≈ 3 2 K s n 2 ( T 0 − T s ) , Q ex 2 3   s   σ s := q s  Q fr := Q fr  σ := σ i + σ e , m s ρ s . i + Q fr Collisional sources:   e     J := J i + J e , J s := σ s u s . ≈ η : JJ + β e : q e J , � v ← →   R s := C s d v ,    Q fr i = Q fr  e m e / m i , � 1 2 � c s � 2 ← → Evolved moments:   Q s := C s d v .   � P ◦ s ≈ − 2 µ s : ∇ u ◦ s ,       1 ρ s Closing moments q s ≈ − k s · ∇ T s .   :=   f s d v ρ s u s v (intraspecies): 1 2 � c s � 2 ρ s e s � P s := c s c s f s d v , Evolution equations: p s := 1 3 tr P s , ∂ t ρ s + ∇ · ( u s ρ s ) = 0 , P ◦ s := P s − p s I , ρ s d s t u s + ∇ p s + ∇ · P ◦ s = σ s E + J s × B + R s � 1 2 c s � c s � 2 f s d v . q s := t e s + p s ∇ · u s + P ◦ ρ s d s s : ∇ u s + ∇ · q s = Q s Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 8 / 40

  9. 2-fluid MHD (extended) electromagnetism ( ∂ t E ≈ 0) Closures Definitions: (simplified): d t := ∂ t + u · ∇ , ∂ t B + ∇ × E = 0 , ∇ · B = 0 , Q := Q i + Q e J J = µ − 1 w = en , 0 ∇ × B ≈ η : JJ w i = m red m i w , Ohm’s law (evolution of J solved for E ) Q s = m red m s Q , w e = − m red w , E = η · J + B × u + m i − m e P ◦ s ≈ − 2 µ s : ∇ u ◦ m e J × B s , e ρ P d := m red n ww q s ≈ − k s · ∇ T s . e ρ ∇ · ( m e ( p i I + P ◦ 1 i ) − m i ( p e I + P ◦ + e )) m − 1 red := m − 1 + m − 1 . � � e i + m i m e ∂ t J + ∇ · ( uJ + Ju − m i − m e JJ ) e 2 ρ e ρ mass and momentum (total): ∂ t ρ + ∇ · ( u ρ ) = 0 ρ d t u + ∇ · ( P i + P e + P d ) = J × B energy evolution (per species): ρ i d t e i + p i ∇ · u i + P ◦ i : ∇ u i + ∇ · q i = Q i , ρ e d t e e + p e ∇ · u e + P ◦ e : ∇ u e + ∇ · q e = Q e ; Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 9 / 40

  10. Resistive MHD MHD system: Fluid closure: P ◦ ≈ − 2 µ : ∇ u ◦ , ∂ t ρ + ∇ · ( ρ u ) = 0 (mass continuity) , ρ d t u + ∇ p + ∇ · P ◦ = J × B q ≈ − k · ∇ T . (momentum balance) , ∂ t E + ∇ · ( u ( E + p ) + u · P ◦ + q ) = J · E (energy balance) , Descriptions: ∂ t B + ∇ × E = 0 (magnetic field evolution) . ρ = total mass density The divergence constraint ∇ · B = 0 is maintained by exact ρ u = total momentum density solutions and must be maintained in numerical solutions. u = velocity of bulk fluid E = total gas-dynamic energy Electromagnetic closing relations: density p = total scalar pressure J := µ − 1 0 ∇ × B (Ampere’s law for current) , P ◦ = total deviatoric pressure ∇ u ◦ = deviatoric rate of “strain” E ≈ B × u + η · J (Ohm’s law for electric field) . (deformation) T = temperature q = total heat flux η = resistivity µ = viscosity k = heat conductivity Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 10 / 40

  11. Outline 1 Presentation of plasma models 2 Derivation of plasma models Kinetic Two-fluid MHD Conclusion Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 11 / 40

  12. Outline 1 Presentation of plasma models 2 Derivation of plasma models Kinetic Two-fluid MHD Conclusion Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 12 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend