facilities for beam driven pwfa
play

Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of - PowerPoint PPT Presentation

Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of Chicago Mark Hogan February 25, 2013 The Beam Driven Plasma Wakefield Accelerator ~1m ~100 m q Two-beam, co-linear, plasma-based accelerator q Plasma wave/wake excited


  1. Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of Chicago Mark Hogan February 25, 2013

  2. The Beam Driven Plasma Wakefield Accelerator ~1m ~100 µ m q Two-beam, co-linear, plasma-based accelerator q Plasma wave/wake excited by relativistic particle bunch q Deceleration, acceleration, focusing by plasma q Accelerating field/gradient scales as ne1/2 q Typical: n e ≈ 10 17 cm -3 , λ p ≈ 100 µ m, G>MT/m, E>10 GV/m q High-gradient, high-efficiency energy transformer q “Blow-out” regime when n b /n p >> 1 2

  3. SLAC/UCLA/USC Experiments @ FFTB Studied many aspects of beam-plasma interaction X-ray Generation Focusing e - Wakefield Acceleration e - Focusing & Matching e - 300 600 ! 0 Plasma Entrance =50 µm L=1.4 m Plasma OFF ! 0 =14 µm Plasma ON $ N =12 % 10 -5 (m rad) 250 500 Envelope # N =18 $ 10 -5 m-rad & 0 =1.16m ! X DS OTR (µm) % 0 =6.1 cm 200 400 & 0 =-0.6 ! x (µm) 150 300 100 200 50 100 05160cedFIT.graph BetatronFitShortBetaXPSI.graph 0 0 -2 0 0 2 2 4 4 6 6 8 10 8 12 10 14 12 1/2 L Phase Advance ! " n e " =K*L # n e 1/2 L Phase Advance ! " n e 1/2 L " Phys. Rev. Lett. 93 , 014802 (2004) Phys. Rev. Lett. 93 , 014802 (2004) Phys. Rev. Lett. 88 , 154801 (2002) Phys. Rev. Lett. 88 , 135004 (2002) Matching e - Electron Beam Refraction at the Focusing & Halo Formation e + Wakefield Acceleration e + Gas–Plasma Boundary 0.3 600 #" 1/sin $ L=1.4 m Plasma OFF ! 0 =14 µm Plasma ON 0.2 500 Envelope # N =18 $ 10 -5 m-rad % 0 =6.1 cm 400 0.1 ! (mrad) & 0 =-0.6 ! x (µm) 300 0 # ! $ 200 -0.1 100 o BPM Data -0.2 – Model BetatronFitShortBetaXPSI.graph 0 -0.3 0 2 4 6 8 10 12 14 -8 -4 0 4 8 Phase Advance ! " n e 1/2 L " " (mrad) Phys. Rev. Lett. 101 , 055001 (2008) 3 Phys. Rev. Lett. 90 , 214801 (2003) Phys. Rev. Lett. 93 , 014802 (2004) Nature 411 , 43 (3 May 2001)

  4. SLAC Plasma Research Motivated by Access to the Energy Frontier and Compact XFELs q Acceleration Gradients of ~50GeV/m (3,000 x SLAC) § Doubled energy of 45 GeV electrons in 1 meter plasma q Single Bunch Nature 445 741 15-Feb-2007 Next Step: Particle acceleration to beam acceleration @ FACET 4

  5. M ULTIBUNCH PWFA Transformer Ratio: R = E + E − Energy Gain: ≤ RE 0 E 0 : incoming energy σ r =125 µm, n e =1.8x10 16 cm -3 , λ p =250 µm Q=30 pC/bunch, ∆ z=250 µm ≈ λ p ∆ z=375 µm ≈ 1.5 λ p Bunch Train Ramped Bunch Train * Large R Large wakefield E + 75 45 Q=15 E - *Tsakanov, NIMA, 1999 Kallos, PAC’07 Proceedings R=7.9 => multiply energy by ≈ 8 in a single PWFA stage! Large energy transfer efficiency 3 P. Muggli, 09/30/2010

  6. Proton-driven plasma wakefield acceleration (PDPWA) p + e - Drive beam: p + E=1 TeV, N p =10 11 σ z =100 µm, σ r =0.43 mm σ θ =0.03 mrad, Δ E/E=10% 600 GeV e - beam Witness beam: e - ≤ 1% Δ E/E in ~500m plasma E 0 =10 GeV, N e =1.5x10 10 Plasma: Li + n p =6x10 14 cm -3 External magnetic field: Field gradient: 1000 T/m Magnet length: 0.7 m A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Nature Physics 5, 363 (2009).

  7. DOE HEP Investments Have Realized Beam & Laser Driven Plasma Accelerators > GeV 11 10 Laser Driven Plasma Accelerators: Beam Driven (e - ) E − 167 Large Gradients: Beam Driven (e + ) • Accelerating Gradients > 100GeV/m (measured) Laser Driven (e - ) E − 164XX 10 • Narrow Energy Spread Bunches 10 • Interaction Length limited to cm’s E − 164X Specialized Facilities: Particle Energy / eV • Multi-TW-PW lasers • Plasma Channels/Capillaries 9 10 L’OASIS Beam Driven Plasma Accelerators: Large Gradients: E − 162 (e − ) • Accelerating Gradients LOA > 50 GeV/m (measured!) LOA 8 • Focusing Gradients L’OASIS 10 RAL > MT/m RAL E − 162 (e+) • Interaction Length ~ meters UCLA Unique SLAC Facilities: KEK • FFTB < 2006, FACET > 2011 7 ILE 10 • High Beam Energy • Short Bunch Length • High Peak Current • Power Density LLNL • e- & e+ 6 10 1990 1995 2000 2005 2010 Year LWFA: T. Tajima and J. M. Dawson PWFA: P. Chen et al Phys. Rev. Lett. 43, 267 - 270 (1979) Phys. Rev. Lett. 54, 693 - 696 (1985) 7

  8. DOE HEP Investments Have Realized Beam & Laser Driven Plasma Accelerators > GeV 11 10 Beam Driven (e - ) E − 167 DOE HEP Office Of Science Issued CD-0 for Beam Driven (e + ) Advanced Plasma Acceleration Facility February Laser Driven (e - ) 2008 E − 164XX 10 10 Answered by Two Facilities: BELLA (LWFA) @ LBNL E − 164X FACET (PWFA) @ SLAC Particle Energy / eV 9 10 L’OASIS E − 162 (e − ) LOA LOA 8 L’OASIS 10 RAL RAL E − 162 (e+) UCLA KEK 7 ILE 10 LLNL 6 10 1990 1995 2000 2005 2010 Year LWFA: T. Tajima and J. M. Dawson PWFA: P. Chen et al Phys. Rev. Lett. 43, 267 - 270 (1979) Phys. Rev. Lett. 54, 693 - 696 (1985) 7

  9. FACET: Facility for Advanced Accelerator Experimental Tests New Installation @ 2km point of SLAC linac: Chicane, FF, Experimental Area Multi-GeV meter-scale plasma cells require: High-density plasmas – gradient § High-energy beams – stored energy § Tightly focussed – match to plasma § focusing channel Experiments High peak-current – large wake amplitude § here FACET Beam Pa Beam Parameters Energy 23 GeV Charge 3 nC s r 20 µ m s z 20 µ m Peak Current 20 kA Species e - & e + A Unique Facility for Accelerator Science 8

  10. Beam Requirements for Next Generation PWFA Experiments High gradients need high density plasmas • ~10 17 e - /cm 3 • >10GeV/m acceleration • >MT/m focusing FACET Needs: • Need two bunches, 100’s fs apart • Individual bunches small in all three dimensions • High bunch charge for blow-out with large wake amplitude & good transport • Need long, uniform high-density plasmas • High-energy for extended meter-scale interaction FACET is the only facility in the world where we can do meter-scale high-gradient plasma acceleration 9

  11. FACET E200 PWFA Program Goals – Next Four Years Collaboration between SLAC/UCLA/MPI • Demonstrate a single-stage high-energy plasma accelerator for electrons - This is THE highest scientific priority for FACET • Meter scale, high gradient, preserved emittance, low energy spread, and high efficiency - Commission beam, diagnostics and plasma source (2012) - Produce independent drive & witness bunch (2012-2013) - Pre-ionized plasmas and tailored profiles to maximize single stage performance: total energy gain, emittance, efficiency (2013-2015) • First experiments with compressed positrons - Identify optimum technique/regime for positron PWFA (2014-2016) Want to demonstrate a plasma module with beam parameters and energy gain at the level required for novel radiation sources and Higgs Factory upgrade 10

  12. FACET is Beginning the 2 nd Phase of Beam Driven Plasma Wakefield Accelerators FFTB Ultra-high-gradient particle acceleration Demonstration FACET Meter scale Machine: Beams Higgs Factory, Low dE/E 11 10 XFEL, ? Beam Driven (e - ) E − 167 Beam Driven (e + ) Laser Driven (e - ) E − 164XX 10 10 FACET-II E − 164X Particle Energy / eV High-brightness beams: Low dE/E 9 10 L’OASIS Sub- µ m Emittance Staging High Efficiency E − 162 (e − ) LOA High-gradient w/ Positrons LOA 8 L’OASIS 10 RAL RAL E − 162 (e+) UCLA The FACET program is a critical step on a KEK path to compact high-energy accelerators 7 10 ILE for access to the energy frontier and smaller XFELs LLNL 6 10 2015 2020 2025 1990 1995 2000 2005 2010 11 Year

  13. A Concept for a Beam Driven Plasma Wakefield Accelerator Linear Collider FACET E cm = 1 TeV L = 10 34 cm 2 s -1 Efficiency wall plug ~ 11% FACET program will transition from particle acceleration to beam acceleration and demonstrate a single PWFA stage with a high-quality beam 10

  14. ~ ¡4 ¡km New ¡concept ¡for ¡a ¡PWFA-­‑LC e+ e-­‑ E cm ¡= ¡1 ¡TeV, ¡L=1.3x10 34 , ¡T=1.0 Main ¡e-­‑ ¡beam ¡(CW) ¡: Main ¡e+ ¡beam ¡(CW) ¡: Absolutely ¡not ¡to ¡scale DR DR Q=1.0 ¡x ¡10 10 e ¡@ ¡12.5 ¡kHz Q=1.0 ¡x ¡10 10 e + ¡@ ¡12.5 ¡kHz e+ ¡source P MB,final ¡= ¡10 ¡MW e-­‑ ¡source 20 ¡plasma ¡stages, ¡ Δ E=25 ¡GeV ¡each ¡stage P P P P P P P P BDS ¡and ¡final ¡focus, (3 ¡km) MagneKc ¡chicanes 2 ¡ns ¡delay InjecKon ¡every ¡half ¡turn, C=1200 ¡m, ¡P loss /P DB ¡= ¡10% ¡ Drive ¡beam ¡aLer ¡accumulaKon ¡: Accu-­‑ Trains ¡of ¡20 ¡bunches, ¡2 ¡ns ¡apart ¡@ ¡12.5 ¡kHz mulator SCRF ¡CW ¡recirculaKng ¡linac ¡ ring ~500 ¡m, ¡19 ¡MV/m Drive ¡beam ¡(CW) ¡: ~ ¡25 ¡m E ¡= ¡25 ¡GeV, ¡Q=2.0 ¡x ¡10 10 e ¡@ ¡12.5 ¡x ¡40 ¡kHz DB Matching P DB,iniKal ¡= ¡2 ¡x ¡20 ¡MW MB ¡bunch dump to ¡ β * ~1cm ¡ e-­‑ ¡source @ ¡12.5 ¡kHz ¡ ¡ ¡injecKon P Main ¡beam ¡structure ¡ Plasma ¡cell Δ z DB,WB ¡~ ¡200 ¡um Δ E=25 ¡GeV ¡ 80 ¡us Drive ¡beam ¡structure ¡out ¡of ¡linac ¡ @ ¡injecKon ~ ¡1 ¡m 2 ¡us DB ¡20-­‑bunch ¡train 2 ¡ns ¡delay θ ~10 ¡mrad Drive ¡beam ¡structure ¡out ¡of ¡acc. ¡ring ¡ ¡ @ ¡12.5 ¡kHz J.P. ¡Delahaye, ¡E. ¡Adli, ¡S. ¡Gessner ~30cm ¡SLAC ¡BB ¡seminar, ¡Dec ¡13, ¡2012 80 ¡us 2 ¡ns Fast ¡kicker 2 ¡ns

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend