dispersion analysis of a strain rate dependent ductile to
play

Dispersion analysis of a strain-rate dependent ductile-to-brittle - PowerPoint PPT Presentation

Dispersion analysis of a strain-rate dependent ductile-to-brittle transition model Harm Askes 1 , Juha Hartikainen 2 , Kari Kolari 3 , Reijo Kouhia 2 1 The University of Sheffield, 2 TKK, 3 VTT The X Finnish Mechanics Days, December 3-4, 2009, Jyv


  1. Dispersion analysis of a strain-rate dependent ductile-to-brittle transition model Harm Askes 1 , Juha Hartikainen 2 , Kari Kolari 3 , Reijo Kouhia 2 1 The University of Sheffield, 2 TKK, 3 VTT The X Finnish Mechanics Days, December 3-4, 2009, Jyv ¨ askyl¨ a Partially funded by the Academy of Finland (121778)

  2. OUTLINE • MOTIVATION • THE MODEL • DISPERSION ANALYSIS – Basics – Viscous material – Elastic damaging material – Full transition model • CONCLUDING REMARKS Photograph: Kari Kolari, Helsinki, Feb 2007 2/14

  3. MOTIVATION E. M. Schulson: Brittle failure of ice, Engineering Fracture Mechanics 68 (2001) 1839–1887. 3/14

  4. THE MODEL (1-D CASE) ⎧ = ρ∂ψ ∂ǫ = βEǫ e = βE ǫ − ǫ i � � σ ⎪ ⎪ ⎪ ⎪ � | σ | � | σ | ⎪ � � np − 1 � p � ⎪ d ǫ i � d ǫ � = ∂ϕ ϕ d 1 ⎪ ⎨ ∂σ = + sign ( t ps t ps vp η ) n βσ r d t βσ r vp β βσ r d t ⎪ � r ⎪ d β = − ∂ϕ ∂Y = − ϕ tr � Y ⎪ ⎪ ⎪ ⎪ ⎪ d t t d β Y r ⎩ ǫ i � < η ǫ i � > η ϕ tr ≥ 0 ϕ tr ≈ 0 when � ˙ and ϕ tr > 1 when � ˙ � 1 � | σ | � p � n ǫ i � ϕ tr = 1 ∼ � ˙ t ps pn vp η βσ r η � r +1 � 2 � Y � σ 1 Y r Y = 1 2 E ( ǫ e ) 2 = 1 ϕ d = , r + 1 t d β Y r 2 E β 4/14

  5. DISPERSION ANALYSIS - Basics Dispersion = waves of different wavelengths have different phase speeds Analysis = put the harmonic wave into the equation of motion u ( x, t ) = A exp [i( kx − ωt )] , ρ d 2 u d t 2 − d σ d x = 0 Dispersion relation ω = Ω( k ) v = ω v R = ∂ω Phase velocity k , group velocity ∂k Nice illustration by Greg Egan 5/14

  6. DISPERSION ANALYSIS - Basics Non-dimensional quantities: � τ = t/t e , t e = L/c e , where c e = E/ρ ξ = x/L, u = u/L, ¯ s = σ/σ r Relative strain e = ǫ/ǫ r where ǫ r = σ r /E Non-dimensional equation of motion d 2 ¯ u d s u − ǫ r s ′ = 0 ¨ d τ 2 − ǫ r d ξ = 0 , simply ¯ Non-dimensional constitutive equations = ǫ r − 1 βǫ e = ǫ r − 1 β ( ǫ − ǫ i ) ⎧ s ⎪ ⎨ ǫ i ˙ = f ( β, s ) ˙ ⎪ β = g ( β, s ) ⎩ 6/14

  7. DISPERSION ANALYSIS - Viscous material ǫ i = ( τ ps s = ǫ r − 1 (˙ ǫ i ) , vp ) − 1 s p Constitutive equations: ˙ ǫ − ˙ ˙ a = p s ′ = ǫ r ˙ s p − 1 ǫ − as ′ , Linearization at s ∗ : ˙ where ∗ τ vp ... u ′′ + a ¨ u − ˙ Equation of motion: ¯ ¯ u = 0 ¯ αξ ) exp[ i (¯ u ( ξ, τ ) = ¯ Damped harmonic wave: ¯ A exp( − ¯ k r ξ − ¯ ωτ )] ω 2 − ¯ ω 2 = 0 α ¯ k 2 α 2 ) + 2¯ Dispersion relation: i ¯ ω (¯ r + ¯ ω ¯ k r − a ¯ Solution ¯ k r a ω = ¯ , α = ¯ √ � � 4 ( a/ ¯ 1 + 1 � k r ) 2 ω ) 2 2 1 + 1 + ( a/ ¯ 7/14

  8. DISPERSION ANALYSIS - Viscous material c R = d ω d¯ ω c = ω ω ¯ = c e and = c e now c R > c e anomalous dispersion d¯ ¯ d k r k r k r k r τ vp = 10 2 , 10 4 ← τ vp = 10 2 , 10 4 ↓ p = 4 → p = 1 , 8 ↑ ( c, c R ) /c e αL 1 1 . 00 10 − 2 10 − 2 0 . 75 10 − 4 0 . 50 0 . 25 10 − 6 10 − 6 10 − 4 10 − 2 10 − 6 10 − 4 10 − 2 10 2 10 4 10 2 10 4 1 1 k r L ωt e 8/14

  9. DISPERSION ANALYSIS - Elastic damaging material ˙ s = ǫ r − 1 (˙ ǫ i ) , β = − ( τ d ) − 1 β − 2 r − 1 s 2 r Constitutive equations: ˙ ǫ − ˙ Linearization at s ∗ , β ∗ results in the equation of motion: ... u ′′ = 0 u − h 0 ˙ u ′′ − h 1 ¨ ¯ ¯ u + h 2 ¯ ¯ h 1 = τ d − 1 β − 2 r − 2 s 2 r h 2 = (2 r + 1) τ d − 1 β − 2 r − 2 s 2 r where h 0 = β ∗ , ∗ , ∗ ∗ ∗ Dispersion relation: 4 − a 1 ¯ ω 2 = 0 , ¯ ω/ ¯ r − a 2 k 2 k r 0 ¯ α = a 0 ¯ ¯ k r � 2 r ω 2 a 0 = ( h 2 − h 0 h 1 )¯ h 2 − h 0 h 1 = 2 r � s ∗ 2 ) , > 0 ω 2 + h 2 2( h 2 0 ¯ τ d β ∗ β ∗ ω 2 − 2 h 2 a 0 ) a 1 = h − 1 0 (¯ 9/14

  10. DISPERSION ANALYSIS - Elastic damaging material c R < c e normal dispersion ◦ ◦ ǫ 0 t d = 10 − 1 , 10 − 2 , 10 − 1 → ǫ 0 t d = 10 − 2 r = 4 , r = 2 , 4 ↑ ( c, c R ) /c e c/c e 3 . 0 3 . 0 ◦ 2 . 5 2 . 5 ǫ 0 t d = 10 − 1 p = 4 2 . 0 2 . 0 p = 2 1 . 5 1 . 5 1 1 10 − 6 10 − 4 10 − 2 10 − 6 10 − 4 10 − 2 10 2 10 4 10 2 10 4 1 1 k r L k r L 10/14

  11. DISPERSION ANALYSIS - Full transition model .... ... u ′′ − h 1 u − h 0 ¨ u + h 2 ˙ u ′′ − h 3 ¨ Equation of motion: ¯ ¯ ¯ ¯ u = 0 , ¯ h 0 = β ∗ h 1 = g β + ( s ∗ /β ∗ ) g s − β ∗ f s h 2 = β ∗ g β h 3 = β ∗ ( g β f s − f β g s ) 4 − a 1 ¯ ω 2 = 0 , ¯ ω/ ¯ k 2 r − a 2 Dispersion relation: k r 0 ¯ α = a 0 ¯ ¯ k r ω 2 + h 2 h 3 a 0 = ( h 2 − h 0 h 1 )¯ ω 2 + h 2 2( h 2 0 ¯ 2 ) ω 2 − 2 h 2 a 0 + h 3 ) a 1 = h − 1 0 (¯ 11/14

  12. DISPERSION ANALYSIS - Full transition model - rate 10 η vp = 1000 s , t d = 1 s , η = 10 − 3 s − 1 , p = r = n = 4 E = 40 GPa , σ r = 20 MPa , t ps 1 . 25 1 . 25 1 . 00 1 . 00 0 . 75 0 . 75 s β 0 . 50 0 . 50 0 . 25 0 . 25 0 1 2 2 3 4 0 1 2 2 3 4 e e c/c e c R /c e 3 . 0 3 . 0 1 1 2 2 2 . 5 2 . 5 3 3 4 4 2 . 0 5 2 . 0 5 6 6 7 7 1 . 5 1 . 5 1 . 0 1 . 0 0 . 5 0 . 5 10 − 8 10 − 6 10 − 4 10 − 2 10 2 10 4 10 − 8 10 − 6 10 − 4 10 − 2 10 2 10 4 1 1 ωt e ωt e 12/14

  13. DISPERSION ANALYSIS - Evolution of the cut-off frequency 0 . 012 1 . 25 η 0 . 010 5 η 10 η 1 . 00 20 η 0 . 008 ω c t e 0 . 75 0 . 006 s η 0 . 50 0 . 004 5 η 10 η 20 η 0 . 25 0 . 002 1 2 3 4 1 2 3 4 e e Emerges near the peak stress The saturation value of ω c depend on the loading rate 13/14

  14. CONCLUDING REMARKS • Both anomalous and normal dispersion depending on state and loading rate • The model is not able to slow down the high frequency components • Emerging cut-off frequency • Length scale of the localization zone? • Stability? 14/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend