a constitutive model for strain rate dependent ductile to
play

A constitutive model for strain-rate dependent ductile-to-brittle - PowerPoint PPT Presentation

A constitutive model for strain-rate dependent ductile-to-brittle transition Juha Hartikainen 1 , Kari Kolari 2 , Reijo Kouhia 1 1 Aalto University, 2 VTT NSCM-23, October 21-22, 2010, KTH Stockholm OUTLINE Motivation The model


  1. A constitutive model for strain-rate dependent ductile-to-brittle transition Juha Hartikainen 1 , Kari Kolari 2 , Reijo Kouhia 1 1 Aalto University, 2 VTT NSCM-23, October 21-22, 2010, KTH Stockholm

  2. OUTLINE • Motivation • The model – Thermodynamic formulation – Helmholtz free energy – Dissipation potential • Concluding remarks Photograph: Kari Kolari, Helsinki, Feb 2007 2/13

  3. MOTIVATION E. M. Schulson: Brittle failure of ice, Engineering Fracture Mechanics 68 (2001) 1839–1887. 3/13

  4. Brittle failure in compression M.S. Paterson, Experimental deformation and faulting in Wombeyan marble, Bull. Geol. Soc. Am. , 69 (1958) 465–476. Occurrence to splitting mode is sensitive to strain rate: J.F . Dorris (1985) 4/13

  5. THERMODYNAMIC FORMULATION Helmholtz free energy ψ ( ǫ e , d ) where ǫ e = ǫ − ǫ i . γ = − ρ ˙ Clausius-Duhem Inequality ψ + σ : ˙ ǫ ≥ 0 γ = ∂ϕ ∂ σ : σ + ∂ϕ Dissipation potential ϕ ( σ , y ) such that ∂ y · y ≥ 0 � � � � � � σ − ρ∂ψ ǫ i − ∂ϕ d − ∂ϕ ˙ = ⇒ : ˙ ǫ e + ˙ : σ + · y = 0 ∂ ǫ e ∂ σ ∂ y σ = ρ∂ψ ǫ i = ∂ϕ d = ∂ϕ ˙ ˙ = ⇒ ∂ ǫ e ∂ σ ∂ y = ⇒ γ ≥ 0 satisfies CDI 5/13

  6. Helmholtz free energy Integrity basis 2 tr ǫ 2 3 tr ǫ 3 I 6 = d · ǫ 2 I 2 = 1 I 3 = 1 I 1 = tr ǫ e , e , e , I 4 = � d � , I 5 = d · ǫ e · d , e · d � 1 2 λI 2 � ρψ = (1 − I 4 ) 1 + 2 µI 2 λµ + H ( σ ⊥ ) λ + 2 µ ( I 4 I 2 1 − 2 I 1 I 5 I − 1 + I 2 5 I − 3 4 ) + (1 − H ( σ ⊥ ))( 1 2 λI 4 I 2 1 + µI 2 5 I − 3 4 ) 4 5 I − 3 − 2 I 6 I − 1 2 I 4 I 2 + I 2 � � + µ 4 4 Heaviside function H ( σ ⊥ ) takes into account the “crack” opening/closure 6/13

  7. Helmholtz free energy - alternative expression Integrity basis ˆ ˆ 2 tr ǫ 2 3 tr ǫ 3 I 5 = ˆ I 6 = ˆ d · ǫ 2 I 2 = 1 I 3 = 1 I 1 = tr ǫ e , e , e , I 4 = � d � , · d , d · ǫ e ˆ e ˆ · d where ˆ d = d / � d � = d /I 4 2 λI 2 � 1 � ρψ = (1 − I 4 ) 1 + 2 µI 2 λµ 1 − 2 I 1 ˆ I 5 + ˆ 1 + µ ˆ + H ( σ ⊥ ) λ + 2 µI 4 ( I 2 I 2 5 ) + (1 − H ( σ ⊥ )) I 4 ( 1 2 λI 2 I 2 5 ) � � 2 I 2 + ˆ I 2 + µI 4 5 − 2 I 6 Stresses are continuous when the “crack” closes 7/13

  8. Dissipation potential Decomposed as ϕ ( σ , y ) = ϕ d ( y ) ϕ tr ( σ ) + ϕ vp ( σ ) where � r +1 � ( y + y 0 ) · M · ( y + y 0 ) 1 Y r ϕ d = τ d (1 − I 4 ) H ( ǫ 1 − ǫ tresh ) Y 2 2( r + 1) r � 1 � p � n ϕ tr = 1 � σ ¯ pn τ vp η (1 − I 4 ) σ r � p +1 1 σ r � σ ¯ ϕ vp = p + 1 τ vp (1 − I 4 ) σ r and M = n ⊗ n , y 0 = βY r n 8/13

  9. MODEL CHARACTERISTICS • Elastic stiffness is reduced monotonously due to damage • Qualitatively predicts correct brittle failure mode in compression/tension Animation • The constraint for the damage � d � ∈ [0 , 1] is satisfied automatically • The transition function ϕ tr deals with the change in the mode of deformation through the damage evolution such that ϕ tr ≥ 0 and ϕ tr ≈ 0 when � ˙ ǫ i � < η and ϕ tr > 1 when � ˙ ǫ i � > η ; • CDI is satisfied a priori for any admissible isothermal process • The dissipation potential is a non-convex function with respect to the thermodynamic forces σ and y 9/13

  10. Uniaxial stress-strain behaviour 1.5 ǫ 0 /η = 10 ˙ 1 σ/σ r ǫ 0 /η = 1 ˙ 0.5 ǫ 0 /η = 0 . 1 ˙ 0 0 1 2 3 4 ǫ/ǫ r 10/13

  11. NUMERICAL EXAMPLE von-Mises solid ¯ σ = σ eff , E = 40 GPa, ν = 0 . 3 , σ r = 20 MPa, τ vp = 1000 s transition strain rate η = 10 − 3 s − 1 , p = r = n = 4 ✲ u prescribed y, v ✛ ✲ L ✻ F B ✲ ❄ z, w x, u 11/13

  12. Load-displacement curves, 12 × 6 mesh τ d η = 10 − 3 ǫ 0 /η = 10 ˙ 1.5 2 1.5 1 F/BHσ r F/BHσ r τ d η = 10 0 1 τ d η = 10 − 1 τ d η = 10 − 2 τ d η = 10 − 3 ǫ 0 /η = 10 . ˙ 0.5 ǫ 0 /η = 1 . 0 ˙ 0.5 ǫ 0 /η = 0 . 1 ˙ 0 0 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 100 u/L 100 u/L 12/13

  13. CONCLUSIONS AND FURTHER DEVELOPMENTS • Thermodynamically consistent formulation • Predicts correct failure modes in tension/compression • Easily extensible to more realistic creep and plasticity models • Length scale ?? • Alternative formulation using ψ ∗ ( σ , α ) and ϕ (˙ ǫ i , Z ) !! 13/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend