outline outline
play

Outline Outline 4 Conservation Laws 4 Conservation Laws 4 - PowerPoint PPT Presentation

Outline Outline 4 Conservation Laws 4 Conservation Laws 4 Constitutive Equations 4 Constitutive Equations 4 Navier 4 Navier- -Stokes Equation Stokes Equation 4 Heat Transfer Equation 4 Heat Transfer Equation 4 Dimensionless Groups 4


  1. Outline Outline 4 Conservation Laws 4 Conservation Laws 4 Constitutive Equations 4 Constitutive Equations 4 Navier 4 Navier- -Stokes Equation Stokes Equation 4 Heat Transfer Equation 4 Heat Transfer Equation 4 Dimensionless Groups 4 Dimensionless Groups G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence Axiom 1: Principle of Conservation of Mass Axiom 2: Principle of Balance of Momentum Axiom 1: Principle of Conservation of Mass Axiom 2: Principle of Balance of Momentum ( n ) d t ∑ = ( Momentum ) Forces n d ∫ ρ = dt dv 0 Mass is invariant Mass is invariant under the motion under the motion dt v Global Global d ∂ ∫ ∫ ∫ ∫ ∫ ρ = ρ + ( n ) ρ + ρ ⋅ = v dv f dv t ds dv 0 v ds Global Global F k k k ∂ dt t v v s v s Divergence Theorem Divergence Theorem ∂ ρ Stress Tensor Stress Tensor + ρ = ∫ ∫ ( v ) 0 = t n ds t dv ( n ) = ⋅ Local Local t n t k k , l l l l k , k ∂ t s v ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 1

  2. Axiom 2: Principle of Balance of Momentum Axiom 2: Principle of Balance of Momentum Axiom 3: Principle of Balance of Angular Axiom 3: Principle of Balance of Angular dv ∫ ρ − ρ − = ( k f t ) dv 0 Momentum Momentum k k , l l dt Global v d ∫ ∫ ρ σ + ε = ρε dv ( r v ) dv r f dv ρ = ρ + k kmj m j kmj m j k f t dt Local Local 1 4 v 4 4 4 2 4 4 4 4 3 1 v 42 4 43 4 k l , k l dt Time rate of change of angular momentum Moment of body force ∫ ∫ ∫ + ε ( n ) + ( n ) + ρ r t ds m ds ds l d v kmj m j 1 2 k 3 k ρ dt = ρ + ∇ ⋅ f t S s s 1 42 43 1 2 3 Couple Stress Moment of surface force Body couple G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence Axiom 4: Principle of Conservation of Energy Axiom 4: Principle of Conservation of Energy Local Q ρ σ = ρ + ε + t m & l o ρ V , , k k kmj mj k , ρ l l i V , o i P o e , P , e , o ε = i i σ = = = t mj 0 m k 0 l When W k k l kmj d + = + ( K E ) W Q { { = dt t t 1 4 2 4 3 Work done Heat transferre d Stress Tensor is Symmetric Stress Tensor is Symmetric mj jm by all the forces Time rate of change kinetic and int ernal enrgies ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 2

  3. Local Global ρ = + + ρ e t v q r & ⎛ + ⎞ d 1 k , k k , k ∫ ∫ l l ρ = ρ ⎜ ⎟ e v v dv v f dv k k k k dt ⎝ 2 ⎠ v v q = heat flux ∫ ∫ ∫ + ⋅ + + ρ ( n ) v t ds q ds rdv r = heat source k k k k s s v G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence ∂ ρ Axiom 5: Entropy Inequality Axiom 5: Entropy Inequality + ∇ ⋅ ρ = ( ) 0 Mass v Mass ∂ t Global ρ d q n r ∫ ∫ ∫ ρη − − ≥ dv k k ds dv 0 d v t = T ρ dt = ρ + ∇ ⋅ Momentum Momentum dt T T t f t v S v 1 4 2 4 3 1 4 4 4 2 4 4 4 3 Time rate of change Heat transfer divided of entropy by temperatur e de Energy ρ = ∇ + ∇ ⋅ + ρ Energy : r t v q ρ dt q r ρ & η − − ≥ ( k ) 0 η ρ d r Local q , k ρ − ∇ ⋅ − ≥ T T ( ) 0 Entropy Entropy dt T T ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 3

  4. Thermodynamics Constitutive Postulates Constitutive Postulates Continuum Thermodynamics Continuum ψ = ψ ρ ( T , , d , T ) ψ = − η Assuming e T k l , k Helmholtz Free Energy Free Energy Helmholtz ∂ ψ ∂ ψ ∂ ψ ∂ ψ • & ψ = & + ρ + + T d T & & ρ ρ q r ∂ ∂ ρ ∂ k ∂ , k l T d T & − η − ψ − − ≥ ( e & T & ) ( k ) 0 k , k l Entropy Entropy , k T T T ∂ ψ ∂ ψ = − = ρ 2 p Pressure − ∂ ρ 1 ∂ ρ ⎡ q T ⎤ 1 Clausius- - Clausius & − ρ ψ + η + + k , k ≥ ( & T ) t v 0 ⎢ ⎥ ∂ ψ p k , k l l T T ρ = − Duhem ρ = − ρ Duhem ⎣ ⎦ & d & d ∂ ρ ρ kk kk G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence Entropy Equation Linear Constitutive Equations Entropy Equation Linear Constitutive Equations ⎡ ⎤ ∂ ψ ∂ ψ ∂ ψ = − δ + 1 • q T t p L d & − ρ + η & + + δ − ρ − ρ + k , k ≥ ( ) T ( t p ) d T d 0 ⎢ ⎥ k k k , k k ∂ l l l ∂ ∂ l T ⎢ T T d T ⎥ ⎣ ⎦ k k k ij ij l l l , k k l ∂ ψ ∂ ψ ∂ ψ = = 0 η = − q = L T ∂ ∂ T d ∂ T , k k l k kj , j q T + δ + k , k ≥ ( t p ) d 0 ≥ L d d 0 ≥ L T T 0 k k k l l l k ij ij k T l l kj , k , j ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 4

  5. Isotropic Materials Thermodynamical Constraints Constraints Isotropic Materials Thermodynamical = + + + µ − L λδ δ µ( δ δ δ δ ) ( δ δ δ δ ) λ + µ ≥ µ ≥ κ ≥ 3 2 0 0 0 k ij k ij ki j kj i 1 ki j kj i l l l l l l = κδ L Stokes Assumption Stokes Assumption k l k l 1 2 Newtonian Fluids Newtonian Fluids = − p t λ = − µ kk 3 = − + λ δ + µ 3 t ( p d ) 2 d k ii k k l l l 1 = − δ + µ D t p 2 d D = − δ d d d = κ ij ij kk ij q T k k k l l l 3 Fourier Law Fourier Law k , k G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence dv ρ = − + µ + λ + µ + ρ k p v ( ) v f , k k , jj j , jk k dt ∇ v ⋅ = 0 Incompressible Fluids Incompressible Fluids d v ρ = −∇ + µ ∇ + ρ 2 p v f dt Navier Navier Stokes Stokes ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 5

  6. de Enthalpy Enthalpy = κ q T ρ = ∇ + ∇ ⋅ + ρ : r ρ t v q p d d p dp k , k = − = ρ − p pv ( ) dt = + k , k ρ ρ h e dt dt dt ρ de ρ = ∇ ⋅ κ ∇ + + ρ ( T ) t v r Heat Heat ij j , i dt dh dp Transfer Transfer ρ = + ∇ ⋅ κ ∇ + Φ + ρ ( T ) r dt dt = − + Φ t v pv ij j , i k , k Heat Capacities Heat Capacities = = dh c dT de c dT Φ = λ + µ v v 2 d v Dissipation Dissipation P v k , k i , i ij j , i G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence dT dP Thermal ρ = ρ − β − Thermal ( 1 ( T T )) ρ = + κ ∇ + Φ + ρ 2 c T r 0 0 Expansion Expansion P dt dt [ ] ρ = − ρ − β − g 1 ( T T ) Body Force f k Body Force Incompressible Flow Incompressible Flow 0 0 dT Boussinesq Equation Boussinesq Equation ρ = κ ∇ + Φ + ρ 2 c T r d v v dt ˆ ρ = −∇ + µ ∇ − ρ β − 2 P g ( T T ) v k 0 0 0 dt Φ = µ + ( v v ) v ˆ Dissipation Dissipation = + ρ i , j j , i j , i P p gz 0 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 6

  7. ∂ ρ * Mass Mass Dimensionless Variables Dimensionless Variables + ∇ * ⋅ ρ * * = ( ) 0 v ∂ * t ρ x tU v = U ρ * = Momentum Momentum i = * t * = ∞ * x i v ρ L L * d 1 Gr 0 v ∞ 2 ρ = −∇ + ∇ − * * * * * * * P T v f * 2 dt Re Re ˆ − T T − P P f Energy Energy = f = * * T 0 = * ∞ * * P dT dP 1 Ec 2 ∆ ρ * = + ∇ * * + Φ * g T Ec T ρ 2 U 0 * * ∞ dt dt Re Pr Re 0 G. Ahmadi G. Ahmadi ME 639-Turbulence ME 639-Turbulence Reynolds Number Reynolds Number Prandtl Number Number Prandtl Concluding Remarks Concluding Remarks ρ U ∞ L µ c = Re 0 = Pr P � Conservation Laws � Conservation Laws µ κ � Constitutive Equations � Constitutive Equations Eckert Number Eckert Number Grashof Number Number Grashof � Navier � Navier- -Stokes Equation Stokes Equation 2 βρ ∆ U 2 3 g L T = = ∞ Gr 0 0 Ec � Heat Transfer Equation � Heat Transfer Equation µ 2 ∆ c T � Dimensionless Groups � P 0 Dimensionless Groups ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend