stress strain
play

Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu - PDF document

Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials Stress 1D Stress P P = P A 3D Stress State yy yx yz xy xx xy xz


  1. Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials

  2. Stress 1D Stress P P σ = P A

  3. 3D Stress State σ yy τ yx   τ yz τ xy σ xx τ xy τ xz   τ zy σ = τ yx σ yy τ yz   σ xx     τ xz τ zx τ zy σ zz τ zx σ zz

  4. Positive Sign Convention σ y τ xy (+) σ x Nominal vs true stress

  5. Strain 1D Strain ∆ l l 0 ǫ = ∆ l l 0

  6. u 1 u 0 x 0 x 1 ǫ x = u 1 − u 0 → ∂u x 1 − x 0 ∂x Normal strain can occur in all three directions. ǫ x = ∂u ∂x ǫ y = ∂v ∂y ǫ z = ∂w ∂z

  7. Analogous to shear stress, there are three independent shear strain components. γ xy = θ 1 + θ 2 θ 2 θ 1 γ xy = γ yx = ∂v ∂x + ∂u ∂y γ yz = γ zy = ∂w ∂y + ∂v ∂z γ xz = γ zx = ∂u ∂z + ∂w ∂x

  8. Plane Stress and Plane Strain Plane Stress σ yy σ y τ yx τ xy τ yz τ xy τ zy (+) σ x σ xx τ xz τ zx σ zz

  9. Plane Strain Materials

  10. Homogeneous: Isotropic: Linear Stress-Strain Relationships Most general material (in the elastic region):       ǫ xx S 11 S 12 S 13 S 14 S 15 S 16 σ xx        ǫ yy   S 21 S 22 S 23 S 24 S 25 S 26   σ yy               ǫ zz   S 31 S 32 S 33 S 34 S 35 S 36   σ zz        =       γ xy S 41 S 42 S 43 S 44 S 45 S 46 τ xy                   γ xz S 51 S 52 S 53 S 54 S 55 S 56 τ xz                   γ yz S 61 S 62 S 63 S 64 S 65 S 66 τ yz

  11. ǫ = Sσ S : compliance matrix Inverse: σ = Kǫ K : stiffness matrix. Orthotropic Materials Usually, a material contain certain symmetries.       ǫ xx S 11 S 12 S 13 0 0 0 σ xx        ǫ yy   S 21 S 22 S 23 0 0 0   σ yy               ǫ zz   S 31 S 32 S 33 0 0 0   σ zz        =       γ xy 0 0 0 S 44 0 0 τ xy                   γ xz 0 0 0 0 S 55 0 τ xz                   γ yz 0 0 0 0 0 S 66 τ yz

  12. Isotropic A special case of orthotropy is isotropy, in which the elastic properties are the same in every direction.       ǫ x 1 − ν − ν 0 0 0 σ x       1 0 0 0  ǫ y   − ν − ν   σ y              1 0 0 0  ǫ z   − ν − ν   σ z  = 1             E  γ xy   0 0 0 2(1 + ν ) 0 0   τ xy               γ xz   0 0 0 0 2(1 + ν ) 0   τ xz              0 0 0 0 0 2(1 + ν ) γ yz τ yz Inverse (stiffness matrix)       σ x 1 − ν ν ν 0 0 0 ǫ x        σ y   ν 1 − ν ν 0 0 0   ǫ y              1 − ν 0 0 0  σ z   ν ν   ǫ z  E       =       (1 + ν )(1 − 2 ν ) 1 − 2 ν 0 0 0 0 0  τ xy     γ xy     2          1 − 2 ν  τ xz   0 0 0 0 0   γ xz     2          1 − 2 ν τ yz 0 0 0 0 0 γ yz 2

  13. E G = 2(1 + ν ) Strain in x-direction ǫ x = 1 E [ σ x − ν ( σ y + σ z )]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend