heterotic large volume compactifications
play

Heterotic Large Volume Compactifications Lilia Anguelova - PowerPoint PPT Presentation

Heterotic Large Volume Compactifications Lilia Anguelova (University of Cincinnati) arXiv:1007.4793 [hep-th]; arXiv:1007.5047 [hep-th] (with S. Sethi, C. Quigley) Motivation String compactifications: 6 internal dimensions: many


  1. Heterotic Large Volume Compactifications Lilia Anguelova (University of Cincinnati) arXiv:1007.4793 [hep-th]; arXiv:1007.5047 [hep-th] (with S. Sethi, C. Quigley)

  2. Motivation – String compactifications: 6 internal dimensions: ∃ many deformations with no energy cost In 4d effective theory: Deformation parameters → massless fields without a potential (moduli) BUT: Moduli vevs determine many 4d properties ... ⇒ huge vacuum degeneracy, lack of predictability of 4d coupling constants → Need to stabilize the moduli !

  3. – Moduli stabilization: • background fluxes generically ⇒ generalized compact. (SU(3) × SU(3) structure) IIB : can have warped CY(3) compactifications • perturbative corrections α ′ , g s corrections (affect 4d K¨ ahler potential only) • non-perturbative effects brane instantons, gaugino condensation For phenomenology: need large volume and weak coupling

  4. – Effective 4d action: N = 1 Supergravity V = e K ( K A ¯ B ¯ B D A WD ¯ W − 3 | W | 2 ) , D A = ∂ A + K A Φ A - moduli K (Φ A ) = K cl + K pert + K non − pert , W (Φ A ) = W cl + W non − pert , W pert ≡ 0 Standard CY(3) compactifications ⇒ V ≡ 0 → Need to consider additional effects ! Classical: background fluxes → W cl Perturbative: α ′ , g s corrections → K pert Non-perturbative: brane instantons → K np , W np

  5. – IIB Large Volume Comp.: CY(3): complex structure moduli and K¨ ahler structure moduli N = 1 SUGRA in 4d: V = e K ( K A ¯ B ¯ B D A WD ¯ W − 3 | W | 2 ) , D A = ∂ A + K A potential for complex str. moduli z i Background fluxes ⇒ � [ due to W flux = ( F 3 + iτH 3 ) ∧ Ω ] → { z i } fixed by D z i W flux = 0 , i = 1 , ..., h 2 , 1 ahler moduli t α : need quantum effects ! K¨ LVC (Quevedo et al.): essential to include α ′ corrections

  6. Balancing of α ′ corrections and np effects ⇒ Minimum at V ∼ e a s τ s > > 1 , V - CY volume , τ s - cycle wrapped by D3 brane Advantages of LVC: - No fine-tuning of � W flux � (unlike in KKLT) - Reliable low-energy EFT - Tool for generation of hierarchies Question: Are there heterotic LVC ? (Leading α ′ correction in heterotic compactifications?)

  7. Plan • Motivation • α ′ -Corrections in the Heterotic String – Perturbative Solution – K¨ ahler Potential for K¨ ahler Moduli • Heterotic Moduli Stabilization – Non-perturbative Superpotential • Large Volume Minima • Summary

  8. α ′ -Corrections in the Heterotic String – 10d Action: d 10 x √− g e − 2Φ � 1 � R + 4( ∂ Φ) 2 − 1 2 H 2 S = 2 κ 2 10 − α ′ � 4 (tr F 2 − tr R 2 + ) + O ( α ′ 3 ) , tr R 2 + = 1 2 R MNAB (Ω + ) R MNAB (Ω + ) , Ω ± = Ω ± H , Ω - spin connection , H = dB + α ′ 4 [ CS (Ω + ) − CS ( A )] , F - YM field strength, A - its connection

  9. – Susy transformations: � ∂ M + 1 � AB + α ′ P M AB ) + O ( α ′ 3 ) δ Ψ M = 4Γ AB (Ω − M ǫ δλ = − 1 � / Φ − 1 / + 3 � / + O ( α ′ 3 ) 2 α ′ P √ ∂ 2 H ǫ 2 2 δχ = − 1 /ǫ + O ( α ′ 3 ) , 2 F 6 H MNP Γ MNP , P MAB = 6 e 2Φ ∇ ( − ) N ( e − 2Φ d H ) MNAB / = 1 H 4d Effective Action: Reduce on a 6d solution → 4d K¨ ahler potential Want α ′ -corrected K¨ ahler pot. ⇒ need α ′ -corrected solution Note: δ Ψ m = 0 and δλ = 0 ⇒ 6d manifold - complex

  10. – Perturbative 6d solution: j + α ′ h (1) j + α ′ 2 h (2) G i ¯ j = g i ¯ j + ... i ¯ i ¯ Φ = φ 0 + α ′ φ (1) + α ′ 2 φ (2) + ... H = α ′ H (1) + α ′ 2 H (2) + ... H (0) = 0 : - 0 th order solution: CY (3) ( H (0) � = 0 ⇒ ∃ O ( α ′ ) cycles) - reliable SUGRA approx. Can show: Φ = φ 0 + O ( α ′ 3 ) with φ 0 = const

  11. – Effective action for the moduli: Reduction ansatz: ds 2 = ˆ g µν ( x ) dx µ dx ν + G mn ( y, M ( x )) dy m dy n , B = B µν ( x ) dx µ ∧ dx ν + B mn ( y, M ( x )) dy m ∧ dy n , Φ = ϕ ( x ) + φ ( y, M ( x )) , T α = b α + it α M I ( x ) = { T α , Z I } , ahler potential for T α : K¨ K = − log( V ) − α ′ 2 � J (0) ∧ ˜ h (1) ∧ ˜ h (1) + O ( α ′ 3 ) , 2 V J = J (0) + α ′ ˜ h (1) + α ′ 2 ˜ h (2) + ...

  12. No order α ′ correction: Varying the moduli: h (1) → h (1) + δh (1) ⇒ g → g + δg , J (0) → J (0) + δJ (0) , h (1) → ˜ h (1) + δ ˜ ˜ h (1) ⇒ Known: ∆ L δg mn = 0 , ∆ L - Lichnerowicz operator Can show: h (1) mn , δh (1) - orthogonal to zero modes of ∆ L mn d 6 y √ g h (1) m � i . e . : m = 0 d 6 y √ g J (0) i ¯ j = 1 � � J (0) ∧ J (0) ∧ ˜ h (1) = 0 j h (1) ⇔ i ¯ 2

  13. – Aside on mirror symmetry: EFT of IIA on CY(3) ⇔ EFT IIB on mirror CY(3) ( h 1 , 1 = p , h 2 , 1 = q ) ( h 1 , 1 = q , h 2 , 1 = p ) EFT: N = 2 susy, Moduli space: M = M V ⊗ M H in IIB: M V - classically exact M V - α ′ corrections in IIA: → compute via IIB on mirror [COGP, Nucl. Phys. B359 (1991) 21] pert. correction: K = − log V + α ′ 3 const ⇒ V agrees with α ′ 3 R 4 computation! → World-sheet description: (2 , 2) SCFT How about (0 , 2) compactifications? [Het. with nonstand. emb.]

  14. Heterotic Moduli Stabilization – Classical stabilization: � W tree = ( H + i dJ ) ∧ Ω , H -flux: complex structure moduli non-K¨ ahler manifolds ( SU (3) structure): K¨ ahler moduli SU (3) structure: 3 � � dJ = 4 i W 1 Ω − W 1 Ω + W 3 + J ∧ W 4 d Ω = W 1 J ∧ J + J ∧ W 2 + Ω ∧ W 5 - not well-understood moduli space - ∃ O ( α ′ ) internal cycles (hep-th/0304001 by BBDP)

  15. – Quantum effects: (No perturbative corrections to W ) Non-perturbative corrections: - world-sheet instantons A α e ia α T α � W inst = α Generically W inst � = 0 for non-standard embedding - gaugino condensation W GC = Ae ia ( S + β α T α ) , β α < < 1 - NS5-brane instantons V = 1 W NS 5 = ˆ Ae − ˆ a V 6 κ αβγ t α t β t γ ,

  16. – Moduli stabilization set-up: Could take: W = W flux + W np , K = K tree (as in KKLT) Instead: ∃ large volume minima ? (as in Quevedo et al.) ⇒ take W = W flux + W np , K = K tree + K ( α ′ ) Only W np = W inst suitable! W GC = Ae iaS Keep to stabilize axion-dilaton S [ D S W = 0 ⇒ � W flux + W GC � ≡ W 0 � = 0 ] Note on consistency: In our backgrounds: dJ ∧ Ω ≡ 0 ⇒ W tree = W flux

  17. Large Volume Minima T α = b α + it α , J = t α ω α , α = 1 , ..., h 1 , 1 K¨ ahler moduli: α A α e ia α T α ] [ W = W 0 + � – Scalar potential: V = V np 1 + V np 2 + V α ′ , β � A β e i ( a α T α − a β ¯ T β ) � e K G α ¯ a α A α a β ¯ V np 1 = β a α A α e ia α T α W 0 K ¯ ie K � G α ¯ � V np 2 = β − c.c. e K � � G α ¯ β K α K ¯ | W 0 | 2 V α ′ = β − 3 Basic assumption: ∃ 2-cycle t ℓ , t ℓ > > t α for ∀ α � = ℓ e − a ℓ t ℓ < < e − a α t α ⇒ for ∀ α � = ℓ

  18. Consider two moduli: t ℓ > > t s K = − ln V + α ′ 2 f ( t ) → K¨ ahler potential: V 2 / 3 Scalar potential: λ e − 2 a s t s � e − 2 a s t s � V np 1 = V 1 / 3 + O V − µ t s e − a s t s � e − a s t s � V np 2 = + O V 2 V � 1 − ν f ( t ) � ν ∼ α ′ 2 V α ′ = V 5 / 3 + O , V 8 / 3 3 2 a s t s : V np 1 , V np 2 , V α ′ - same order of magnitude! For V ∼ e V = λ e − 2 a s t s V 1 / 3 − µ t s e − a s t s − ν f ( t ) ⇒ V 5 / 3 + ... V

  19. – Type IIB (for comparison): [hep-th/0502058 by BBCQ] • leading correction: O ( α ′ 3 ) • V np 1 , V np 2 , V α ′ comparable for V ∼ e a s τ s , τ s - 4-cycle vol. √ τ s e − 2 a s τ s µ τ s e − a s τ s + ˆ ν V = ˆ → λ − ˆ V 2 V 3 V � 2 √ τ s e a s τ s , � ν ˆ 3 µ ˆ 4ˆ λ At min.: V = τ s = [ a s τ s > > 1 ] 2ˆ µ 2 ˆ λ – Heterotic two-moduli case: V = λ e − 2 a s t s V 1 / 3 − µ t s e − a s t s − ν f ( t ) V 5 / 3 V 3 ∂V 2 a s t s Minimum: ∂ V = 0 → V ∼ e ∂V BUT: ∂t s = 0 has no solution for t s !

  20. – Heterotic LV minima: Need at least three moduli: t ℓ > > t 1 , t 2 • f ( t ) - homogeneous of degree 0 in t 1 , 2 • f ( t ) - nontrivial function (i.e. f � = const ) e − 2 a 1 t 1 e − 2 a 2 t 2 + σ e − a 1 t 1 e − a 2 t 2 V = λ 1 + λ 2 V 1 / 3 V 1 / 3 V 1 / 3 � � t 1 f t 1 e − a 1 t 1 t 2 e − a 2 t 2 t 2 − µ 1 − µ 2 − ν V 5 / 3 V V 3 3 2 a 1 t 1 ∼ e 2 a 2 t 2 Minimum: V ∼ e Now can solve for t 1 , t 2 ; easy to obtain t 1 , 2 ∼ O (100)

  21. Summary – Heterotic Large Volume Comp.: • Leading α ′ corrections in effective action [ α ′ -pert. solution] • K¨ ahler potential for K¨ ahler moduli − No order α ′ corrections! [leading effect: O ( α ′ 2 ) ] • Heterotic scalar potential − World-sheet instantons [nonstandard embeddings] 3 2 a s t s , t s - small 2-cycle] • Large volume: ∃ minimum [ V ∼ e – Open issues: • Gauge bundle moduli • Realistic examples • Cosmological applications

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend