ee529 semiconductor optoelectronics
play

EE529 Semiconductor Optoelectronics Optical Waveguides 1. Modes in - PowerPoint PPT Presentation

EE 529 Semiconductor Optoelectronics Optical Waveguides EE529 Semiconductor Optoelectronics Optical Waveguides 1. Modes in planar waveguides 2. Ray-optics approach 3. EM-wave approach 4. Modes in channel waveguides Photonic


  1. EE 529 Semiconductor Optoelectronics – Optical Waveguides EE529 Semiconductor Optoelectronics Optical Waveguides 1. Modes in planar waveguides 2. Ray-optics approach 3. EM-wave approach 4. Modes in channel waveguides “Photonic Devices,” Jia-Ming Liu, Chapter 2 “Theory of Optical Waveguides,” by H. Kogelnik, in “Guided-wave Optoelectronics,” T. Tamir, ed., Chapter 2, Springer Verlag Lih Y. Lin

  2. EE 529 Semiconductor Optoelectronics Why study waveguides for integrated – Optical Waveguides optoelectronics? Cleaved reflecting surface Semiconductor laser Photonic integrated circuits W L Stripe electrode Oxide insulator p -GaAs (Contacting layer) p -Al x Ga 1-x As (Confining layer) p -GaAs (Active layer) n -Al x Ga 1-x As (Confining layer) 2 1 3 Substrate n -GaAs (Substrate) Current paths Substrate Electrode Cleaved reflecting surface Elliptical laser Light: Science and Applications (2012) Active region where J > J th . beam (Emission region) Modulator Directional coupler W av eg u id es In V ( t ) A B L o E le ctro de V ( t ) B C O u t E lec trod e B In D A A W av eg u id e L iN bO F ib ers 3 L iN bO E O Sub str ate 3 2 Lih Y. Lin

  3. EE 529 Semiconductor Optoelectronics – Optical Waveguides E-M Field in a Planar Waveguide Warm-up question: What kind of structure can be a waveguide? Assuming a monochromatic wave propagating in z-direction: ω = − β ω = j t j z j t ( , ) ( ) ( , ) E r t E r e E x y e e ∇ + = 2 2 2 ( ) ( ) ( ) 0 E r k n r E r ∂ 2 + − β = 2 2 2 ( , ) ( ) ( , ) 0 E x y k n E x y Region I: 1 ∂ 2 x ∂ 2 + − β = 2 2 2 ( , ) ( ) ( , ) 0 E x y k n E x y Region II: 2 ∂ 2 x ∂ 2 + − β = 2 2 2 ( , ) ( ) ( , ) 0 E x y k n E x y Region III: 3 ∂ 2 x 3 Lih Y. Lin

  4. EE 529 Semiconductor Optoelectronics – Optical Waveguides Modes in a Planar Waveguide − β 2 2 2 ( ) k n Modal solutions are sinusoidal or exponential, depending on the sign of i Boundary conditions: ∂ ( , ) E x y ( , ) and E x y must be continuous at the interface between layers. ∂ x > > n n n Assuming , let’s draw possible waveguide modes: 2 3 1 kn 1 kn 3 kn 2 0 x β n 1 n 2 n 3 (The technique you learned from solving optical waveguide modes can be applied to the design of many photonic components.) 4 Lih Y. Lin

  5. EE 529 Semiconductor Optoelectronics – Optical Waveguides Guided Modes in a Planar Waveguide Examples of guided modes in a symmetrical waveguide m: Mode order Q: How to define the mode order? Q: Can we obtain an infinite number of solutions to β with continuous values? 5 Lih Y. Lin

  6. EE 529 Semiconductor Optoelectronics Experimental Observation of – Optical Waveguides Waveguide Modes Q1: How to choose the laser wavelength? Q2: How to create different modes? Q3: How to tell which side is air, which side is the substrate? 6 Lih Y. Lin

  7. EE 529 Semiconductor Optoelectronics – Optical Waveguides Do things in simple ways first. → Geometrical optics. 7 Lih Y. Lin

  8. EE 529 Semiconductor Optoelectronics Ray Patterns in the – Optical Waveguides Three-Layer Planar Waveguide Remember that only discrete values of β are allowed. How to solve for allowable β ? Step 1: Determine the relation between β and the angle of the optical ray. Different modes have different angles. ∝ + γ sin( ) E hx In the guided region, β + h = 2 2 2 2 k n 2 Overall propagation constant → Propagation constant in x   h −   θ = 1 tan For the m-th mode,   m β   m → Propagation constant in z Lower-order mode has smaller θ m and larger β m. 8 Lih Y. Lin

  9. EE 529 Semiconductor Optoelectronics – Optical Waveguides Ray Patterns for Different Modes β φ 2 n − − φ = ≤ 1 1 1 sin sin 2 kn n 2 2 n n n − φ ≥ ≤ φ ≤ 1 3 1 3 sin sin 2 2 n n n 2 2 2 kn 1 kn 3 kn 2 0 Higher-order β Lower-order 9 Lih Y. Lin

  10. EE 529 Semiconductor Optoelectronics – Optical Waveguides Reflection at a Dielectric Interface Step 2: Determine phase changes at the interfaces. = = , E rE E tE 3 1 2 1 θ − θ cos cos n n = 1 1 2 2 = 1 + For TE wave: r t r TE θ + θ TE TE cos cos n n 1 1 2 2 θ − θ cos cos n n n = = + 2 1 1 2 1 ( 1 ) For TM wave: r t r TM TM TM θ + θ n cos cos n n 2 2 1 1 2 = ϕ = ϕ | | exp( ), | | exp( ) r r j r r j TE TE TE TM TM TM → Phase change accompanies reflection. Ref: Pedrotti 3 , “Introduction to Optics,” Sec. 23.1-23.3 10 Lih Y. Lin

  11. EE 529 Semiconductor Optoelectronics – Optical Waveguides Phase Change on Total Internal Reflection 2 θ − 2 θ θ − θ − θ θ − φ 2 2 2 2 2 2 2 2 φ 2 sin sin sin sin sin n n sin n n n = = 1 c 1 1 2 = 1 = c 1 1 2 TE TM 1 tan tan θ θ θ θ θ 2 2 2 cos cos 2 cos n cos sin n n 1 1 1 1 1 1 2 c 2 11 Lih Y. Lin

  12. EE 529 Semiconductor Optoelectronics – Optical Waveguides Dispersion Equation Step 3: Define transverse resonance condition. Transverse resonance condition: θ − φ − φ = π 2 cos 2 2 2 kn h m m : mode number f c s θ cos kn f h : phase shift for the transverse passage through the film φ = φ 2 ( ) : phase shift due to total internal reflection from film/cover interface , TM c TE φ = φ 2 ( ) : phase shift due to total internal reflection from film/substrate interface , TM s TE Dispersion equation ( β vs. ω ): θ − φ − φ = π cos kn h m → Solve for θ . f c s β < < ≡ = θ n N n sin Effective guide index N n s f f k 12 Lih Y. Lin

  13. EE 529 Semiconductor Optoelectronics Graphical Solution – Optical Waveguides of the Dispersion Equation Symmetrical waveguide, φ s = φ c Asymmetrical waveguide, φ s ≠ φ c For a symmetrical waveguide, there is always a solution (no cutoff) for fundamental mode (m = 0). Increasing h (and/or decreasing λ ) will support more modes. 13 Lih Y. Lin

  14. EE 529 Semiconductor Optoelectronics – Optical Waveguides Typical β – ω diagram Cut-off kn s kn f Higher-order β Lower-order 14 Lih Y. Lin

  15. EE 529 Semiconductor Optoelectronics – Optical Waveguides Numerical Solution for Dispersion Equation (I) Define: Normalized frequency and film thickness ≡ − 2 2 V kh n n f s Normalized guide index − 2 2 N n ≡ s b − 2 2 n n f s b = 0 at cut-ooff (N = n s ), and approaches 1 as N → n f . Measure for the asymmetry 4 − − 2 2 2 2 n n n n n ≡ ≡ f s c s c for TE, for TM a a − − 2 2 4 2 2 n n n n n f s c f s a = 0 for perfect symmetry (n s = n c ), and a approaches infinity for strong asymmetry (n s ≠ n c , n s ~ n f ). 15 Lih Y. Lin

  16. EE 529 Semiconductor Optoelectronics – Optical Waveguides Numerical Solution for Dispersion Equation (II) For TE modes, dispersion relation + b b a θ − φ − φ = π → − − − = π + + 1 1 cos kn h m 1 tan tan V b m f c s − − 1 1 b b ν = m : Mode number (Normalized) cut-off frequency: − = 1 tan V a 0 = + π V V m 0 m # of guided modes allowed: 2 h = − 2 2 m n n λ f s <Example> AlGaAs/GaAs/AlGaAs double heterostructure, n = 3.55/3.6/3.55. Determine a waveguide thickness supporting 0 th , 0 th and 1 st order modes for λ = 1.55 µ m.. 16 Lih Y. Lin

  17. EE 529 Semiconductor Optoelectronics – Optical Waveguides The Goos-Hänchen Shift ϕ d = z s β s d − = − θ 2 2 1 / 2 ( ) tan kz N n For TE modes s s − − θ 2 2 1 / 2 ( ) tan N n = s kz For TM modes   s 2 2 N N   + − 1   2 2 n n   s f The lateral ray shift indicates a penetration depth: z = tan s x s θ 17 Lih Y. Lin

  18. EE 529 Semiconductor Optoelectronics – Optical Waveguides Effective Waveguide Thickness Effective thickness: = + + h h x x eff s c Normalized effective thickness: ≡ − 2 2 H kh n n eff f s For TE modes: 1 1 = + + H V + b b a Minimum H → Maximum confinement Effective waveguide thickness cannot be zero, even for symmetrical waveguide (a = 0). Example: Sputtered glass, n s = 1.515, n f = 1.62, n c = 1, a = 3.9. Determine the minimum effective waveguide thickness. 18 Lih Y. Lin

  19. EE 529 Semiconductor Optoelectronics – Optical Waveguides Ray-optic approach can solve for the effective index, but this is not good enough. Why? 19 Lih Y. Lin

  20. EE 529 Semiconductor Optoelectronics – Optical Waveguides Guided E-M Wave in a Planar Waveguide Define: κ = − β = − γ 2 2 2 2 2 n k c c c κ = − β 2 2 2 2 n k f f κ = − β = − γ 2 2 2 2 2 n k s s s ∂ ∂ 2 2 + − β = → − γ = 2 2 2 2 ( , ) ( ) ( , ) 0 0 E x y n k E x y E E Cover: ∂ c ∂ c 2 2 x x ∂ ∂ 2 2 + − β = → + κ = 2 2 2 2 ( , ) ( ) ( , ) 0 0 E x y n k E x y E E Film: f f ∂ ∂ 2 2 x x ∂ ∂ 2 2 + − β = → − γ = 2 2 2 2 ( , ) ( ) ( , ) 0 0 E x y n k E x y E E Substrate: s s ∂ ∂ 2 2 x x 20 Lih Y. Lin

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend