discrete parafermions and coulomb gas in the square
play

Discrete parafermions and Coulomb gas in the square-lattice O ( n ) - PowerPoint PPT Presentation

Discrete parafermions and Coulomb gas in the square-lattice O ( n ) model Yacine Ikhlef Section Math ematiques, Gen` eve Thursday 27th May 2010 Ascona This talk is based on : YI, J. Cardy, J. Phys. A 42 , 102001 (2009) M. Rajabpour, J.


  1. Discrete parafermions and Coulomb gas in the square-lattice O ( n ) model Yacine Ikhlef Section Math´ ematiques, Gen` eve Thursday 27th May 2010 Ascona

  2. This talk is based on : ◮ YI, J. Cardy, J. Phys. A 42 , 102001 (2009) M. Rajabpour, J. Cardy, J. Phys. A 42 , 14703 (2007) V. Riva, J. Cardy, J. Stat. Mech P12001 (2006) ◮ S. Smirnov, ICM vol. II, 1421 (2006) ◮ S.0. Warnaar, M.T. Batchelor and B. Nienhuis, J. Phys. A 25 , 3077 (1992) H.W.J. Bl¨ ote, B. Nienhuis, J. Phys. A 22 , 1415 (1989)

  3. Plan The square-lattice O ( n ) model Integrable models on a regular rhombic lattice Discrete parafermions

  4. The square-lattice O ( n ) model

  5. 1. The model ◮ Partition function Π( G ) = n # loops ( G ) � � ω ( G , j ) , Z = Π( G ) site j subgraph G ◮ Local Boltzmann weights t w 1 w 2 u 1 u 2 v

  6. 2. Yang-Baxter Equations (YBE) ◮ Plaquette diagram (“ˇ R -matrix”) � � λ := t ( λ ) + u 1 ( λ ) + + . . . + w 2 ( λ ) ◮ Yang-Baxter Equations λ ′ λ = λ ′′ λ ′′ λ ′ λ with λ ′′ = λ − λ ′ − 3( π − θ ) 4 ◮ Commutation of transfer matrices λ ′ λ ′ λ ′ λ ′ λ λ λ λ λ ′′ λ ′′ = λ ′ λ ′ λ ′ λ ′ λ λ λ λ

  7. 3. Solution of the Yang-Baxter Equations [Nienhuis] n = − 2 cos 2 θ − cos 2 λ + sin 5 θ 2 − sin 3 θ 2 − sin θ t ( λ ) = 2 � 3 θ − π � u 1 ( λ ) = 2 sin θ cos − λ 4 � 3 θ − π � u 2 ( λ ) = 2 sin θ cos + λ 4 � � cos 2 λ + sin 3 θ v ( λ ) = − 2 � � cos( θ − 2 λ ) + sin θ w 1 ( λ ) = − 2 � cos( θ + 2 λ ) + sin θ � w 2 ( λ ) = − . 2

  8. 4. Three physical regimes [Nienhuis et al. ] ◮ Regime I : 0 < θ < π ◮ Central charge : c eff = 1 − 6(1 − g ) 2 g = 2 θ , g π � 2 √ g ± m √ g � ◮ Conformal dimensions : h , ¯ h = 1 e , e , m ∈ Z 4 Simple Coulomb gas (= compactified GFF)

  9. 4. Three physical regimes [Nienhuis et al. ] ◮ Regime I : 0 < θ < π ◮ Central charge : c eff = 1 − 6(1 − g ) 2 g = 2 θ , g π � 2 √ g ± m √ g � ◮ Conformal dimensions : h , ¯ h = 1 e , e , m ∈ Z 4 Simple Coulomb gas (= compactified GFF) ◮ Regime II : − π < θ < − π 3 2 − 6(1 / 2 − 2 g ) 2 ◮ Central charge : c eff = 3 g = π + θ , 2 π g ◮ Conformal dimensions : � 2 2 � ( e / √ 2 g + m √ 2 g ) , ( e / √ 2 g + m √ 2 g ) + 1 h ∈ , e ≡ m [2] 8 8 2 2 h = ( e / √ 2 g + m √ 2 g ) + 1 16 , e ≡ m + 1 [2] 8 Coulomb gas + Ising

  10. 4. Three physical regimes [Nienhuis et al. ] ◮ Regime I : 0 < θ < π ◮ Central charge : c eff = 1 − 6(1 − g ) 2 g = 2 θ , g π � 2 √ g ± m √ g � ◮ Conformal dimensions : h , ¯ h = 1 e , e , m ∈ Z 4 Simple Coulomb gas (= compactified GFF) ◮ Regime II : − π < θ < − π 3 2 − 6(1 / 2 − 2 g ) 2 ◮ Central charge : c eff = 3 g = π + θ , 2 π g ◮ Conformal dimensions : � 2 2 � ( e / √ 2 g + m √ 2 g ) , ( e / √ 2 g + m √ 2 g ) + 1 h ∈ , e ≡ m [2] 8 8 2 2 h = ( e / √ 2 g + m √ 2 g ) + 1 16 , e ≡ m + 1 [2] 8 Coulomb gas + Ising ◮ Regime III : − π 3 < θ < 0 ◮ Coupling of CG and Ising ? ◮ Full low-energy spectrum is not known

  11. Integrable models on a regular rhombic lattice

  12. 5. Transfer matrix for rhombic lattice ◮ One-row transfer matrix (periodic transverse BCs) 1 α L ◮ Scaling limit T L ( α ) ∼ const L exp( − sin α H ) exp( i cos α P ) ◮ Conformal invariance H = 2 π P = 2 π L 0 − c L ( L 0 + ¯ L ( L 0 − ¯ 12) , L 0 ) , where L n , ¯ L n are Virasoro generators ◮ CFT prediction for eigenvalues of T L ( α ) − log Λ L ( α ) ≃ Lf ∞ − 2 π h − c h − c � ie i α � � − ie − i α � �� ¯ L 24 24

  13. 6. Relation between α and λ ◮ YBE − → − → asymptotics of Λ L Bethe Ansatz ◮ Result − log Λ ≃ Lf ∞ + 2 π h − c h − c � e i ρ ( θ ) λ � � + e − i ρ ( θ ) λ � �� ¯ L 24 24 For example, in regime I, ρ ( θ ) = 2 π/ (3 π − 3 θ ). ◮ Simple relation α = π | λ | < π 2 − ρ ( θ ) λ , 2 ρ

  14. Discrete parafermions

  15. 7. Discretely holomorphic functions ◮ Morera’s theorem (in the continuum) : � If F is continuous and ∀ C closed circuit, C F ( z ) dz = 0, then F is holomorphic. ◮ Discrete version : Let F be defined on the edges of the lattice L . We say that F is discretely holomorphic on L iff, for every plaquette P with corners { z i } : � z i + z j � � ( z i − z j ) F = 0 . 2 � i j �∈ ∂ P

  16. 8. Definition of the discrete parafermion [Smirnov, Cardy-Rajabpour-Riva-YI] ◮ Introduce a pair of defects at 0 and z , and let ψ s ( z ) = 1 � Π( G ) e − isW ( z ) Z G | [0 and z carry defects] ◮ Example configuration ( W ( z ) = − π ) z 0

  17. 9. Discrete holomorphicity equations ◮ Around a plaquette : � � ψ ( z ) � δ z = 0. ◮ Linear equations on the Boltzmann weights   t . . A ( θ, s , α )  = 0   .  w 2 ◮ Singularity condition : det A ( θ, s , α ) = 0 ⇔ s = 3 θ − π 2 π ◮ Solution for Boltzmann weights = solution of YBE ! One recovers the relation λ ↔ α

  18. 10. Relation to SLE [Smirnov] ◮ Prove (or assume) convergence of � ψ s � to an analytic function ◮ In the upper half plane H , � ψ s � H solves a boundary value problem : Arg � ψ s � H = π s 2 sgn ( z ) for real z ⇒ � ψ s � H = const z s ◮ If g t is the conformal map g t : H \ γ t → H t / g t ) s is a martingale then ( g ′ ◮ Consequence : the driving function W t is Brownian W t = √ κ B t , with s = 6 − κ 2 κ

  19. Discussion and Conclusion ◮ The square O ( n ) model is integrable, with three physical regimes ◮ In regimes I and II, effective degrees of freedom were determined by Bethe Ansatz + asymptotic calculation ◮ Regime III is analytically and numerically harder ◮ We found a discrete parafermion for all regimes ◮ Smirnov’s argument ( modulo convergence) connects the model to SLE : In regimes II and III, how to describe fermions in the SLE formalism ?

  20. Thank you for your attention !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend