phase structure of finite density phase structure of
play

Phase structure of finite density Phase structure of finite density - PowerPoint PPT Presentation

Phase structure of finite density Phase structure of finite density lattice QCD by a histogram method Q y g Shinji Ejiri Shinji Ejiri Niigata University WHOT-QCD collaboration S. Ejiri 1 , S. Aoki 2 , T. Hatsuda 3,4 , K. Kanaya 2 , Y.


  1. Phase structure of finite density Phase structure of finite density lattice QCD by a histogram method Q y g Shinji Ejiri Shinji Ejiri Niigata University WHOT-QCD collaboration S. Ejiri 1 , S. Aoki 2 , T. Hatsuda 3,4 , K. Kanaya 2 , Y. Nakagawa 1 , H. Ohno 2,5 , H. Saito 2 , and T. Umeda 6 1 Niigata Univ., 2 Univ. of Tsukuba, 3 Univ. of Tokyo, 4 RIKEN, 1 Niigata Univ 2 Univ of Tsukuba 3 Univ of Tokyo 4 RIKEN 5 Bielefeld Univ., 6 Hiroshima Univ. YIPQS HPCI i YIPQS-HPCI international molecule-type workshop on New-type of i l l l k h N f Fermions on the Lattice (YITP, Kyoto, Feb.9-24, 2012)

  2. Phase structure of QCD at high temperature and density Lattice QCD Simulations quark-gluon plasma phase T • Phase transition lines RHI • Equation of state LH SP PS C C RHIC low-E FAIR • Direct simulation: • Direct simulation: A AGS Impossible at  0. deconfinement? chiral SB? quarkyonic? hadron phase phase color super color super conductor? nuclear matter  q

  3. Probability distribution function  Distribution function (Histogram) X : order parameters, total quark number, average plaquette etc.         Z m , T , dX W X , m , T , histogram  In the Matsubara formalism,             S N Z m , T , DU det M m , e g f                          S S N N W X , m , T , DU X- X det M m , e g f  where det M : quark determinant, S g : gauge action. h d M k d i S i  Useful to identify the nature of phase transitions  Useful to identify the nature of phase transitions e.g. At a first order transition, two peaks are expected in W ( X ). 

  4.  -dependence of the effective potential         ,        Z T , dX W X , T , ( ) ln ( ) V X W X eff X : order parameters, total quark number, average plaquette, quark determinant etc. Crossover      V X , T , Critical point Correlation length: short eff V ( X ): Quadratic function Correlation length: long Correlation length: long Curvature: Zero T T QGP 1 st order phase transition 1 order phase transition hadron Two phases coexist CSC? CSC? D Double well potential bl ll i l 

  5. Quark mass dependence of the critical point Quenched N f =2    2 nd order 2 nd order 1 st order 1 st order Physical point y p m s Crossover Crossover 1 st order   0 0 0  m ud • Where is the physical point? • Extrapolation to finite density – investigating the quark mass dependence near  =0 • Critical point at finite density?

  6. Equation of State • Integral method    3 p 1 ln Z – Interaction measure e ac o easu e    ,  4 3 ln T VT a P computed by plaquette (1x1 Wilson loop) and the derivative of det M . – Pressure at  =0 p 1 4  ln Z 3 T T VT VT • Integral    p p 3 p     a       d ln a   4 4 4 4 4 4 T T T T T T a 0 a a 0 a 0 : start point p =0 3           p   p   1 1 Z Z ( ( ) ) N N det d t M M ( ( ) ) • Pressure at  0,         t 0 ln ln     4 4 3     T T VT Z ( 0 ) N det M ( 0 )   s 0 1        X dX X W X , m , T , X P or det M ( ) det M ( 0 ) • with    m , T , Z

  7. Plan of this talk • Test in the heavy quark region – H. Saito et al. (WHOT-QCD Collab.), Phys.Rev.D84, 054502(2011) – WHOT-QCD Collaboration, in preparation • Application to the light quark region at finite density Application to the light quark region at finite density – S.E., Phys.Rev.D77, 014508(2008)) – WHOT-QCD Collaboration, in preparation WHOT QCD Collaboration, in preparation (Lattice 2011 proc.: Y. Nakagawa et al., arXiv:1111.2116)

  8. Distribution function in the heavy quark region WHOT QCD C ll b Ph WHOT-QCD Collab., Phys.Rev.D84, 054502(2011) R D84 054502(2011) • We study the critical • We study the critical surface in the ( m ud , m s ,  ) space in the heavy quark space in the heavy quark region. • Performing quenched • Performing quenched simulations + Reweighting. Reweighting. – plaquette gauge action + Wilson quark action

  9. (  , m,  )-dependence of the Distribution function • Distributions of plaquette P (1x1 Wilson loop for the standard action )                              N 6 N P W W P P , , , , m m , , DU DU P- P P P det det M M m m , , e e f site       (Reweight factor         R P , , m , m , W P , , m , W P , , m , 0 0 0 0 0   N    f   det M m ,     P- P           det , 0 M m N       f     0 det det M M m m ,                              ( ( , 0 0 ) ) 6 6 N N P P ' ' 6 6 N N P P ' ' R P e e 0 site 0 site 0           P- P det M m , 0    0 ( , 0 ) 0 P ' Effective potential:     V                                     V P P , , , , m m , , ln ln W W P P , , m m , , V V P P , , , , m m , , 0 0 ln ln R R P P , , , , m m , , m m , , eff ff eff ff 0 0 0 0 0 0 0 0     N     f         det M m , ,            l ln R R P P 6 6 N N P P ln l     site 0   det M m , 0 0 P

  10. Distribution function in quenched simulations Effective potential in a wide range of P : required Effective potential in a wide range of P : required. Plaquette histogram at K =1/ m q =0. Derivative of V eff at  =5.69   5  points, quenched. 24 3 N 4 , site dV     dV                    dV eff / dP is adjusted to  =5.69, using  eff eff 6 N j , g 2 2 1 1 site site 2 2 1 1 dP dP dP dP These data are combined by taking the average.

  11. Effective potential near the quenched limit WHOT-QCD, Phys.Rev.D84, 054502(2011) WHOT QCD Phys Rev D84 054502(2011) dV Quenched Simulation first order eff ( m q =  , K=0) dP dP K ~1/ m q for large m q crossover Quark mass smaller 24 3  5  points, N f =2 4 lattice, • detM: Hopping parameter expansion • detM: Hopping parameter expansion,   N f =2: K cp =0.0658(3)(8)     det M K        4 N 3 N  N ln   N 288 N K P 12 2 N K t t      f f site s R    det 0 M T T c  real part of Polyakov loop l t f P l k l 0 0 . 02 02 m • First order transition at K = 0 changes to crossover at K > 0. 

  12. Endpoint of 1 st order transition in 2+1 flavor QCD N f =2: K cp =0.0658(3)(8)           det d M M K K        4 N 3 N  2 ln 2 288 N K P 12 2 N K   t t   site s R   det M 0 N f =2+1         2 det M K det M K   ud s ln     3   det M 0                4 4 4 4 N N 3 3 N N N N  288 N 2 K K P 12 2 N 2 K K t t t site ud s s ud s R The critical line is described by t    N N N 2 2 K K K K 2 2 K K t t t t t  ud s cp( N f 2)

  13. Finite density QCD in the heavy quark region              a a † † U x e q U x , U x e q U x in det M 4 4 4 4          T T * * e q , e q Polyakov loop                   det det M M K K ,             4 N 3 N / T / T *  N ln N 288 N K P 6 2 N K e e   t t   f f site s   det M 0 , 0                               N N N N 4 4 3 3  N N 288 288 N N K K P P 12 12 2 2 N N K K cosh h T T i i sinh i h T T t t t t f site s R I phase Polyakov loop        i  i  distribution R I • We can extend this discussion to finite density QCD. to finite density QCD.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend