gradient flow running coupling su 2 with 6 fundamental
play

Gradient flow running coupling: SU(2) with 6 fundamental flavors - PowerPoint PPT Presentation

Gradient flow running coupling: SU(2) with 6 fundamental flavors Viljami Leino Kari Rummukainen Joni Suorsa Kimmo Tuominen University of Helsinki and Helsinki Institute of Physics 28.07.2016 Lattice 2016, Southampton Motivation Nearly


  1. Gradient flow running coupling: SU(2) with 6 fundamental flavors Viljami Leino Kari Rummukainen Joni Suorsa Kimmo Tuominen University of Helsinki and Helsinki Institute of Physics 28.07.2016 Lattice 2016, Southampton

  2. Motivation • Nearly • Previous studies at N f =6 conformal theories inconclusive 2 3 4 can have walking behavior • 4-loop MS IRFP g 2 ∼ 30 needed by technicolor • SU(2) with 8 massless fer- 0.5 mions has a fixed point 1 1.08 12 8 0.25 1.06 1.04 GF GF , 2) /g 2 1.02 β 0 1.00 σ ( g 2 continuum 0.98 -0.25 16-32 2-loop 0.96 4-loop MS 0.94 4 0 1 2 3 4 5 6 7 8 9 g 2 -0.5 GF 0 1 2 3 4 5 6 g 1 V. Leino et al. Lattice 2015 (hep-lat/1511.03563 ) , 2 T. Karavirta et al. JHEP 1205 (2012) 003 (hep-lat/1111.4104) , 3 T. Appelquist et al. Phys. Rev. Lett. 112, 111601 (2014) (hep-lat/1311.4889) 4 M. Hayakawa et al. Phys. Rev. D 88, 094504 (2013) (hep-lat/1307.6997) 1 / 14

  3. Model • HEX-smeared 1 Wilson-clover action • Schrödinger functional • Use trivial (Dirichlet) boundaries (no background field) • Used to reach zero mass (Tune the κ cr at L = 24) • Allows the measurement of mass anomalous dimension • Lattice sizes: 8,12,16,18,20,24,30,(36) • Use step scaling step s = 3 / 2 ( 8-12, 12-18, 16-24, 20-30) • Can compare to s = 2 at 8-16 and 12-24 • β between 8 and 0.5 • We run into bulk phase transition at β < 0 . 5 • Smaller lattices ∼ 80 000 trajectories, larger ∼ 15 000 1 S. Capitani, S. Durr and C. Hoelbling, JHEP 0611 (2006) 028 2 / 14

  4. Gradient Flow • Use the gradient flow 1 2 GF = t 2 g 2 N � E ( t + τ 0 a 2 ) � • Flow can be evolved using both Wilson plaquette (W) and Lüscher-Weisz (LW) actions • Energy can be measured with both clover and plaquette definitions • We use LW and clover unless otherwise specified √ • Fix flow time t to L by setting scale: c = 8 t / L = 0 . 3 • Use τ 0 correction to tune down the a 2 effects 3 • Measuring also the topological charge: 1 � ǫ µναβ G a µν ( x ; t ) G a Q = αβ ( x ; t ) 32 π 2 x 1 M. Luscher and P. Weisz , JHEP 1102 (2011) 051 (hep-th/1101.0963) , 2 P. Fritzsch and A. Ramos , JHEP 1310 (2013) 008 (hep-lat/1301.4388) , 3 A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos and D. Schaich. JHEP 1405 (2014) 137 (hep-lat/1404.0984) 3 / 14

  5. Measured couplings 26 β =8 24 β =6 β =5 22 β =4 β =3 20 β =2 18 β =1.7 β =1.5 16 β =1.3 14 β =1.1 2 g β =1 12 β =0.9 10 β =0.8 β =0.75 8 β =0.7 6 β =0.65 β =0.6 4 β =0.55 β =0.53 2 β =0.5 0 8 12 16 20 24 28 32 36 L/a 4 / 14

  6. Topology β =0.53 β =0.53 15 15 10 10 5 5 0 0 -5 -5 -10 -10 β =0.7 β =0.7 1.5 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 β =2 β =2 0.0015 0.0015 0.001 0.001 0.0005 0.0005 0 0 -0.0005 -0.0005 -0.001 -0.001 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 L-W evolved flow Wilson evolved flow • Topology frozen at small couplings, becomes unfrozen at largest couplings • LW evolved flow fluctuates more • Don’t use configurations that are frozen to nonzero values • Projecting δ Q , 0 1 could work, but for N f = 8 effects were small 1 P. Fritzsch et al. PoS Lattice 2013 , 461 (2014) (hep-lat/1311.7304) 5 / 14

  7. Step scaling function • Interpolate couplings using a rational function, m = 7, n = 2 1 + � m i = 1 a i g 2 i g 2 GF ( g 2 0 , L / a , t ) = g 2 0 . 0 1 + � n j = 1 b j g 2 j 0 • Estimate systematic errors by changing the fit parameters • Step scaling function: � GF ( g 0 , s L Σ( u , s , a / L ) = g 2 � a ) , σ ( u , s ) = a / L → 0 Σ( u , s , a / L ) lim � � g 2 GF ( g 0 , L a )= u • Extrapolate to continuum limit: Σ( u , s , a / L ) = σ ( u , s ) + c ( u )( L a ) − 2 • Fix τ 0 to minimize a 2 effects 6 / 14

  8. Fixing τ 0 6.0 14 13 12 5.8 11 10 5.6 9 8 σ ( g 2 , 2) σ ( g 2 , 2) 5.4 7 6 5 5.2 4 τ 0 = 0 3 5.0 τ 0 = 0 . 05 2 τ 0 = 0 . 1 1 4.8 0 0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 ( a/L ) 2 ( a/L ) 2 u = 5 τ optimal vs. τ 0 = 0 • Drop the smallest lattice from continuum extrapolation • Estimate: τ optimal = 0 . 012 log ( 1 + 20 g 2 ) (Preliminary) • Logarithm makes sure the τ 0 doesn’t grow too large 7 / 14

  9. Different discretizations c = 0 . 3 , τ 0 = 0 2.2 13 12 2.0 11 1.8 10 σ ( g 2 , 2) σ ( g 2 , 2) 1.6 9 8 1.4 W Clover W Clover 7 W Plaq W Plaq 1.2 LW Clover LW Clover 6 LW Plaq LW Plaq 1.0 5 0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 ( a/L ) 2 ( a/L ) 2 u = 2 u = 11 • Plaquette and Clover agree on continuum limit, plaquette has stronger discretization effects • LW and W diverge slightly on large couplings, W has stronger discretization effects 8 / 14

  10. Step scaling on the lattice c = 0 . 3 1.15 1.2 1.15 1.1 1.1 1.05 1.05 1 1 0.95 0.95 2 2 2 ,2)/g 2 ,2)/g 0.9 0.9 σ (g σ (g 0.85 0.85 L=8 0.8 L=12 L=8 0.75 0.8 L=16 L=12 L=20 0.7 L=18 L=24 0.75 2-loop 2-loop 0.65 4-loop 4-loop 0.7 3-loop 0.6 3-loop 0.65 0.55 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 2 2 g g s = 3 / 2 s = 2 9 / 14

  11. Continuum limit 1.15 1.15 1.10 1.10 1.05 1.05 GF GF GF , 2) /g 2 GF , 2) /g 2 1.00 1.00 σ ( g 2 σ ( g 2 continuum continuum 0.95 20-30.0 0.95 16-24.0 2-loop 2-loop 3-loop MS 3-loop MS 0.90 0.90 4-loop MS 4-loop MS 0 5 10 15 20 0 5 10 15 20 g 2 g 2 GF GF 12 − 30 8 − 24 • L20-30 has less statistics than L8-12 • L8-12 behaves oddly on strong coupling and L8 was not used when defining τ 0 10 / 14

  12. Effects of parameters 1.15 1.15 1.10 1.10 1.05 1.05 GF GF GF , 2) /g 2 GF , 2) /g 2 1.00 1.00 σ ( g 2 σ ( g 2 LW τ 0 No τ 0 0.95 W 0.95 2-loop 2-loop 3-loop MS 3-loop MS 0.90 0.90 4-loop MS 4-loop MS 0 5 10 15 20 0 5 10 15 20 g 2 g 2 GF GF 1.15 1.15 1.10 1.10 1.05 1.05 GF GF GF , 2) /g 2 GF , 2) /g 2 1.00 1.00 σ ( g 2 σ ( g 2 Clover continuum c=0.4 0.95 Plaq 0.95 20-30.0 2-loop 2-loop 3-loop MS 3-loop MS 0.90 0.90 4-loop MS 4-loop MS 0 5 10 15 20 0 5 10 15 20 g 2 g 2 GF GF 11 / 14

  13. Mass anomalous dimension • Schrödinger functional pseudoscalar density renormalization constant allows calculation of γ 1 • Interpolate Z P with Z P = 1 + � 5 i = 1 a i g 2 i 0 • Near fixed point approximate as γ ∗ √ Nf 1 L ) = Z P ( g 0 , sL a ) � Z P ( g 0 , L Σ P ( u , a � a ) = a ) , � f p ( 1 L Z P ( g 0 , L a ) � g 2 GF = u 2 γ ∗ = − log σ P ( g 2 ) a → 0 Σ P ( g 2 , a σ P ( g 2 ) = lim L ) , log s 1 S. Capitani, M. Luscher, R. Sommer and H. Witting Nucl. Phys. B 544 (1999) (hep-lat/9810063) 12 / 14

  14. γ ∗ 0.55 0.40 L=8 0.5 L=12 0.35 L=16 0.45 L=20 0.30 0.4 0.35 0.25 0.3 0.20 γ ∗ γ 0.25 0.15 0.2 0.10 0.15 continuum 20-30 0.1 0.05 Perturbative 0.05 0.00 0 1 2 3 4 5 6 7 8 9 10 11 12 0 0 2 4 6 8 10 12 14 16 18 20 22 24 g 2 2 GF g 0.40 1.2 0.35 1.0 0.30 0.8 0.25 0.20 γ ∗ Z P 0.6 0.15 0.4 0.10 continuum 20-30 0.2 0.05 Perturbative L=30 0.00 0 1 2 3 4 5 6 7 8 9 10 11 12 0.0 0 2 4 6 8 10 g 2 GF g 2 13 / 14 0

  15. Conclusions • Finite volume GF step scaling works at strong coupling • This choice of action, boundaries and smearing allows us to reach relatively small β before running into a bulk phase transition • Topological freezing mostly problem only on certain range of β ’s • N f = 6 seems to approach a IRFP around g 2 ∼ 15 • Check also the posters: • γ with spectral density method – Joni Suorsa • Spectrum of N f = 2 , 4 , 6 , 8 – Sara Tähtinen 14 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend