discrete parafermions and quantum group symmetries
play

Discrete parafermions and quantum-group symmetries Yacine Ikhlef - PowerPoint PPT Presentation

Discrete parafermions and quantum-group symmetries Yacine Ikhlef LPTHE (CNRS/Paris-6) joint work with R. Weston (Edinburgh), M. Wheeler (Melbourne), P. Zinn-Justin (LPTHE). Florence, 13/05/2015 Outline 1. Introduction 2. The


  1. Discrete parafermions and quantum-group symmetries Yacine Ikhlef LPTHE (CNRS/Paris-6) joint work with R. Weston (Edinburgh), M. Wheeler (Melbourne), P. Zinn-Justin (LPTHE). Florence, 13/05/2015

  2. Outline 1. Introduction 2. The Bernard-Felder construction 3. Mapping to loop models

  3. 1. Introduction

  4. Discretely holomorphic functions ◮ Discrete function: F ( z ) on midpoints of square lattice L z 3 z 2 z 4 z 1 ◮ Discrete “Cauchy-Riemann” equation: i π 4 F ( z 1 ) − e − i π i π 4 F ( z 3 ) + e − i π 4 F ( z 2 ) − e 4 F ( z 4 ) = 0 e � ◮ Short-hand notation: F ( z ) δ z = 0 ⋄

  5. Loop models in Statistical Mechanics The Temperley-Lieb loop model ◮ Plaquette configurations: x y ◮ Lattice configurations: W ( C ) = x N x ( C ) y N y ( C ) n N ℓ ( C ) ◮ Boltzmann weights: � ◮ Partition function: Z = W ( C ) config . C

  6. Loop models in Statistical Mechanics Correlation functions ◮ Averaging on Boltzmann weights: � � f ( C ) � := 1 W ( C ) f ( C ) . Z C ◮ Two-leg correlation function: � G ( z 1 , z 2 ) := 1 W ( C ) Z C | z 1 , z 2 ∈ same loop ◮ Phases in scaling limit: ◮ Non-critical phase: G ( z 1 , z 2 ) ∼ exp( −| z 1 − z 2 | /ξ ) ◮ Critical phase: G ( z 1 , z 2 ) ∼ | z 1 − z 2 | − 2 X 2 ◮ “Coulomb-gas” studies ⇒ TL model is critical for 0 < n ≤ 2.

  7. Discretely holomorphic observables in loop models b z a ◮ Pick a pair of boundary points ( a , b ) − → define BC ab . ◮ Define correlation function: � 1 W ( C ) e i s θ a → z ( C ) F s ( z ) := Z ab C | z ∈ open path [ θ a → z := winding angle of red arc from a to z ] � ◮ Theorem: if n = 2 sin π s then ∀⋄ ∈ Ω , F s ( z ) δ z = 0. 2 ⋄

  8. Algebraic structure behind discrete holomorphicity? ◮ Discretely holomorphic observables like F s exist in various models: TL, O ( n ), Z N clock models . . . ◮ Rhombic lattice ⇒ additional parameter α z 3 z 2 α α z 4 z 1 Modified Cauchy-Riemann equation: e − i α i α 2 F ( z 2 ) − e − i α i α 2 F ( z 1 )+ e 2 F ( z 3 ) − e 2 F ( z 4 ) = 0 ( CR α ) ◮ Observations : 1. F s satisfies CR α when W ≡ integrable Boltzmann weights 2. α ≡ spectral parameter ◮ Q: general relation discrete holomorphicity ↔ integrability?

  9. Discrete holomorphicity in Physics and Mathematics ◮ [Dotsenko,Polyakov 88] : Linear relations for fermions in Ising ◮ [Smirnov 01–06] : Conf. inv. for interfaces in perco+Ising ◮ [Cardy,Riva,Rajabpour,YI 06–09] : Discr. holo. in various lattice models, obs. relation to integrability ◮ [Smirnov,Chelkak,Hongler,Izyurov,Kyt¨ ol¨ a 09–12] : Scaling limit of interfaces+corr. func. in Ising ◮ [Duminil-Copin,Smirnov 10] : Proof of connectivity constant for SAW on honeycomb ◮ [Beaton,de Gier,Guttmann,Jensen 11–12] : Critical boundary parameter for SAW on honeycomb ◮ [Fendley 12] : Discr. holo. from topological QFT ◮ [Alam,Batchelor 12] : CR eq ↔ star-triangle in Z N models ◮ [Hongler,Kyt¨ ol¨ a,Zahabi 12] : Discr. holo. for non-local currents in Ising, transfer-matrix formalism

  10. 2. The Bernard-Felder construction

  11. Hopf algebras Bi-algebra structure � A ⊗ A → A ◮ Product m : a ⊗ b �→ a . b � � A → A ⊗ A ∆ ◮ Coproduct ∆ : a �→ � i a ′ i ⊗ a ′′ i i a ′ a ′′ a i i ◮ ∆( a . b ) = ∆( a ) . ∆( b ) , ∆( a + λ b ) = ∆( a ) + λ ∆( b ) ◮ (∆ ⊗ id ) ◦ ∆ = ( id ⊗ ∆) ◦ ∆ ◮ Example: enveloping algebra of a Lie algebra g ◮ g Lie algebra, with bracket [ X a , X b ] = i f abc X c ◮ A := U ( g ) = span(words on alphabet { X a } ) ◮ bracket ≡ commutator ([ a , b ] = ab − ba ) ◮ Trivial coproduct ∆( X a ) = X a ⊗ 1 + 1 ⊗ X a

  12. Hopf algebras Tensor-product representations ◮ V finite-dimensional vector space Map π : A → End ( V ) is a representation of A iff: ◮ π is linear and surjective, ◮ π is a morphism: π ( ab ) = π ( a ) π ( b ). ◮ Coproduct = tool to construct higher-dim. representations: � � a ′ i ⊗ a ′′ π 1 ( a ′ i ) ⊗ π 2 ( a ′′ ∆( a ) = − → π 12 ( a ) := i ) i i i � ∆ L − 1 . . . ◮ Iterate: i a (1) a (2) a (3) a ( L ) a i i i i ◮ Example: A = U ( g ), for a Lie algebra g L � π ( L ) ( X a ) = 1 ⊗ · · · ⊗ 1 ⊗ π ( X a ) ⊗ 1 ⊗ · · · ⊗ 1 ↑ m =1 m − th

  13. Hopf algebras The R -matrix ◮ The two representations V 1 ⊗ V 2 and V 2 ⊗ V 1 are isomorphic. ◮ Intertwiner R 12 : V 1 ⊗ V 2 → V 2 ⊗ V 1 such that: ∀ a ∈ A , R 12 π 12 ( a ) = π 21 ( a ) R 12 ◮ Expand coproduct [ π 12 ( a ) = � i π 1 ( a ′ i ) ⊗ π 2 ( a ′′ i )]: V 2 V 1 V 2 V 1 a ′ a ′′ � � i i R 12 R 12 = i i a ′ a ′′ i i V 1 V 2 V 1 V 2 ◮ Consistency condition = Yang-Baxter equation: ( R 23 ⊗ 1 ) . ( 1 ⊗ R 13 ) . ( R 12 ⊗ 1 ) = ( 1 ⊗ R 12 ) . ( R 13 ⊗ 1 ) . ( 1 ⊗ R 23 )

  14. Non-local conserved currents [Bernard-Felder, 91] ◮ Generators of A : { J 1 , J 2 . . . } and { µ 1 , µ 2 . . . } . Assume the coproduct of A has the following form: ∆ ∆( J k ) = J k ⊗ 1 + µ k ⊗ J k + ∆ ∆( µ k ) = µ k ⊗ µ k ◮ Iteration of coproduct ⇒ “conserved charges”: � L Q k := ∆ L − 1 ( J k ) = µ k ⊗ · · · ⊗ µ k ⊗ J k ⊗ 1 ⊗ · · · ⊗ 1 ↑ m =1 m ◮ Non-local currents: ψ k ( m ) := µ k ⊗ · · · ⊗ µ k ⊗ J k ⊗ 1 ⊗ · · · ⊗ 1 ↑ m ψ k ( m ) = . . . V 1 V m V L

  15. Commutation relations ◮ From intertwining relations [ R 12 π 12 ( a ) = π 21 ( a ) R 12 ]: ◮ For a = J k : + = + ◮ For a = µ k : = ◮ Transfer matrix: T = V V ′ V V ′ . . . V V ′ ◮ Conservation laws: T .π ( L ) ( a ) = π ( L ) ( a ) . T ∀ a ∈ A ,

  16. The affine quantum group A = U q ( � s ℓ 2 ) ◮ Generators: E 0 , E 1 , F 0 , F 1 , T 0 , T 1 { E 0 , E 1 , F 0 , F 1 } =raising/lowering ops, { T 0 , T 1 } =diag. ops. ◮ Product rules: T i − T − 1 i [ T 0 , T 1 ] = 0 [ E i , F j ] = δ ij q − q − 1 = q 2( − 1) δ ij E j = q 2( − 1) δ ij +1 F j T i E j T − 1 T i F j T − 1 i i (+ higher order rules . . . ) ◮ Coproduct rules: ∆( F i ) = F i ⊗ T − 1 ∆( E i ) = E i ⊗ 1 + T i ⊗ E i + 1 ⊗ F i i ∆( T i ) = T i ⊗ T i ◮ Introduce ¯ ∆(¯ E i ) = ¯ E i ⊗ 1 + T i ⊗ ¯ E i := qT i F i ⇒ E i ◮ BF structure: { J k } = { E 0 , E 1 , ¯ E 0 , ¯ E 1 } { µ k } = { T 0 , T 1 } .

  17. Evaluation representations of A = U q ( � s ℓ 2 ) ◮ Representations are labelled by a complex number u Explicit form: � � � � � �  u − 1 q − 1  0 0 0 0  ¯  E 0 �→ E 0 �→ T 0 �→    u 0 0 0 0 q  π u : � � � � � �     0 u 0 0 q 0  ¯  E 1 �→ E 1 �→ T 1 �→  u − 1 q − 1 0 0 0 0 ◮ Intertwiner: R ( u / v ) π u , v = π v , u R ( u / v )   [ qu / v ] 0 0 0   [ z ] = z − z − 1 0 [ u / v ] 1 0   R ( u / v ) =  ,  0 1 [ u / v ] 0 q − q − 1 0 0 0 [ qu / v ]

  18. Application to the six-vertex model ◮ Use basis for V u : {↑ , ↓} . Plaquette configurations: ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ◮ Boltzmann weights:   ω 1 0 0 0   0 ω 5 ω 4 0   R 6V =   0 ω 3 ω 6 0 0 0 0 ω 2 ◮ When R 6V ≡ R U q ( � s ℓ 2 ) , the 6V model is integrable.

  19. 3. Mapping to loop models

  20. From the TL model to the 6V model [Baxter, Kelland, Wu 73] ◮ Orient each loop independently: = + e 2 i πλ e − 2 i πλ n = 2 cos 2 πλ ◮ Partition function: � x N x ( C ) y N y ( C ) e 2 i πλ [ N + ℓ ( C ) − N − ℓ ( C )] Z = C ◮ Distribute phase factors locally: α α e i αλ e − i αλ

  21. From the TL model to the 6V model (2) ◮ Vertex configurations: + + ◮ Six-vertex weights arising from loop model: � ω 5 = e +2 i λα x + e − 2 i λ ( π − α ) y ω 1 = ω 2 = x , ω 3 = ω 4 = y , ω 6 = e − 2 i λα x + e +2 i λ ( π − α ) y ◮ Set q = − e 2 i λπ , w = e − 2 i λα : ω 1 = ω 2 = [ qw ] , ω 3 = ω 4 = [ w ] ⇒ ω 5 = ω 6 = 1 .

  22. Conserved currents in the 6V model � ∆( E 0 ) = E 0 ⊗ 1 + T 0 ⊗ E 0 ⇒ BF current ψ 0 ◮ ∆( T 0 ) = T 0 ⊗ T 0 ψ 0 ( m ) = T 0 ⊗ T 0 ⊗ · · · ⊗ T 0 ⊗ E 0 ⊗ 1 ⊗ · · · ⊗ 1 ↑ m − th ◮ Commutation with R -matrix ⇒ linear relation: ψ 0 ( z 1 ) − ψ 0 ( z 2 ) − ψ 0 ( z 3 ) + ψ 0 ( z 4 ) = 0 . z 3 z 2 z 4 z 1 V ′ V ◮ Similar construction for E 1 , ¯ E 0 , ¯ E 1 → ψ 1 , ¯ ψ 0 , ¯ ψ 1 .

  23. Mapping of conserved currents What is the meaning of � ψ 0 ( z ) � in terms of loops? γ b a ψ 0 ( z ) cannot sit alone on a closed loop ψ 0 = u × = 0 � ⇒ � ψ 0 ( z ) � = u W ( C ) × ( phase factor ) Z C | z ∈ γ

  24. Mapping of conserved currents (2) Identification of phase factors q = e i π (2 λ − 1) ◮ θ b → z = θ a → z + π , b a ◮ phase factor: θ a → z + θ b → z − π e i λ ( θ a → z + θ b → z ) = A e i (4 λ − 1) θ a → z × q 2 π ↑ ↑ turns T 0 ⊗ · · · ⊗ T 0 � ◮ ⇒ � ψ 0 ( z ) � = uA W ( C ) e i (4 λ − 1) θ a → z = uA × F s ( z ) Z C | z ∈ γ spin: s = 4 λ − 1 (remember Theorem in Intro)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend